Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 14(1): e070704, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262660

RESUMO

OBJECTIVES: The study aims to investigate the short-term associations between exposure to ambient air pollution (nitrogen dioxide (NO2), particulate matter pollution-particles with diameter<2.5 µm (PM2.5) and PM10) and incidence of asthma hospital admissions among adults, in Oxford, UK. DESIGN: Retrospective time-series study. SETTING: Oxford City (postcode areas OX1-OX4), UK. PARTICIPANTS: Adult population living within the postcode areas OX1-OX4 in Oxford, UK from 1 January 2015 to 31 December 2021. PRIMARY AND SECONDARY OUTCOME MEASURES: Hourly NO2, PM2.5 and PM10 concentrations and meteorological data for the period 1 January 2015 to 31 December 2020 were analysed and used as exposures. We used Poisson linear regression analysis to identify independent associations between air pollutant concentrations and asthma admissions rate among the adult study population, using both single (NO2, PM2.5, PM10) and multipollutant (NO2 and PM2.5, NO2 and PM10) models, where they adjustment for temperature and relative humidity. RESULTS: The overall 5-year average asthma admissions rate was 78 per 100 000 population during the study period. The annual average rate decreased to 46 per 100 000 population during 2020 (incidence rate ratio 0.58, 95% CI 0.42 to 0.81, p<0.001) compared to the prepandemic years (2015-2019). In single-pollutant analysis, we observed a significantly increased risk of asthma admission associated with each 1 µg/m3 increase in monthly concentrations of NO2 4% (95% CI 1.009% to 1.072%), PM2.5 3% (95% CI 1.006% to 1.052%) and PM10 1.8% (95% CI 0.999% to 1.038%). However, in the multipollutant regression model, the effect of each individual pollutant was attenuated. CONCLUSIONS: Ambient NO2 and PM2.5 air pollution exposure increased the risk of asthma admissions in this urban setting. Improvements in air quality during COVID-19 lockdown periods may have contributed to a substantially reduced acute asthma disease burden. Large-scale measures to improve air quality have potential to protect vulnerable people living with chronic asthma in urban areas.


Assuntos
Poluição do Ar , Asma , COVID-19 , Poluentes Ambientais , Adulto , Humanos , Dióxido de Nitrogênio , Pandemias , Estudos Retrospectivos , Controle de Doenças Transmissíveis , Material Particulado , Hospitais , Reino Unido
2.
Build Environ ; 237: 110330, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37124118

RESUMO

Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic activities with arising impacts upon urban air quality. To date, these air quality changes associated with lockdown measures have typically been assessed using limited city-level regulatory monitoring data, however, low-cost air quality sensors provide capabilities to assess changes across multiple locations at higher spatial-temporal resolution, thereby generating insights relevant for future air quality interventions. The aim of this study was to utilise high-spatial resolution air quality information utilising data arising from a validated (using a random forest field calibration) network of 15 low-cost air quality sensors within Oxford, UK to monitor the impacts of multiple COVID-19 public heath restrictions upon particulate matter concentrations (PM10, PM2.5) from January 2020 to September 2021. Measurements of PM10 and PM2.5 particle size fractions both within and between site locations are compared to a pre-pandemic related public health restrictions baseline. While average peak concentrations of PM10 and PM2.5 were reduced by 9-10 µg/m3 below typical peak levels experienced in recent years, mean daily PM10 and PM2.5 concentrations were only ∼1 µg/m3 lower and there was marked temporal (as restrictions were added and removed) and spatial variability (across the 15-sensor network) in these observations. Across the 15-sensor network we observed a small local impact from traffic related emission sources upon particle concentrations near traffic-oriented sensors with higher average and peak concentrations as well as greater dynamic range, compared to more intermediate and background orientated sensor locations. The greater dynamic range in concentrations is indicative of exposure to more variable emission sources, such as road transport emissions. Our findings highlight the great potential for low-cost sensor technology to identify highly localised changes in pollutant concentrations as a consequence of changes in behaviour (in this case influenced by COVID-19 restrictions), generating insights into non-traffic contributions to PM emissions in this setting. It is evident that additional non-traffic related measures would be required in Oxford to reduce the PM10 and PM2.5 levels to within WHO health-based guidelines and to achieve compliance with PM2.5 targets developed under the Environment Act 2021.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...