Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(5): 1404-1414, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751620

RESUMO

Aggregating poly(glycine-alanine) (poly-GA) is derived from the unconventional translation of the pathogenic intronic hexanucleotide repeat expansion in the C9orf72 gene, which is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly-GA accumulates predominantly in neuronal cytoplasmic inclusions unique to C9orf72 ALS/FTD patients. Poly-GA is, therefore, a promising target for PET/CT imaging of FTD/ALS to monitor disease progression and therapeutic interventions. A novel 64Cu-labeled anti-GA antibody (mAb1A12) targeting the poly-GA protein was developed and evaluated in a transgenic mouse model. It was obtained with high radiochemical purity (RCP), radiochemical yield (RCY), and specific activity, and showed high stability in vitro and ex vivo and specifically bound to poly-GA. The affinity of NODAGA-mAb1A12 for poly-GA was not affected by this modification. [64Cu]Cu-NODAGA-mAb1A12 was injected into transgenic mice expressing GFP-(GA)175 in excitatory neurons driven by Camk2a-Cre and in control littermates. PET/CT imaging was performed at 2, 20, and 40 h post-injection (p.i.) and revealed a higher accumulation in the cortex in transgenic mice than in wild-type mice, as reflected by higher standardized uptake value ratios (SUVR) using the cerebellum as the reference region. The organs were isolated for biodistribution and ex vivo autoradiography. Autoradiography revealed a higher cortex-to-cerebellum ratio in the transgenic mice than in the controls. Results from autoradiography were validated by immunohistochemistry and poly-GA immunoassays. Moreover, we confirmed antibody uptake in the CNS in a pharmacokinetic study of the perfused tissues. In summary, [64Cu]Cu-NODAGA-mAb1A12 demonstrated favorable in vitro characteristics and an increased relative binding in poly-GA transgenic mice compared to wild-type mice in vivo. Our results with this first-in-class radiotracer suggested that targeting poly-GA is a promising approach for PET/CT imaging in FTD/ALS.

2.
Acta Neuropathol Commun ; 11(1): 112, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434215

RESUMO

Cytoplasmic aggregation and concomitant nuclear clearance of the RNA-binding protein TDP-43 are found in ~ 90% of cases of amyotrophic lateral sclerosis and ~ 45% of patients living with frontotemporal lobar degeneration, but no disease-modifying therapy is available. Antibody therapy targeting other aggregating proteins associated with neurodegenerative disorders has shown beneficial effects in animal models and clinical trials. The most effective epitopes for safe antibody therapy targeting TDP-43 are unknown. Here, we identified safe and effective epitopes in TDP-43 for active and potential future passive immunotherapy. We prescreened 15 peptide antigens covering all regions of TDP-43 to identify the most immunogenic epitopes and to raise novel monoclonal antibodies in wild-type mice. Most peptides induced a considerable antibody response and no antigen triggered obvious side effects. Thus, we immunized mice with rapidly progressing TDP-43 proteinopathy ("rNLS8" model) with the nine most immunogenic peptides in five pools prior to TDP-43ΔNLS transgene induction. Strikingly, combined administration of two N-terminal peptides induced genetic background-specific sudden lethality in several mice and was therefore discontinued. Despite a strong antibody response, no TDP-43 peptide prevented the rapid body weight loss or reduced phospho-TDP-43 levels as well as the profound astrogliosis and microgliosis in rNLS8 mice. However, immunization with a C-terminal peptide containing the disease-associated phospho-serines 409/410 significantly lowered serum neurofilament light chain levels, indicative of reduced neuroaxonal damage. Transcriptomic profiling showed a pronounced neuroinflammatory signature (IL-1ß, TNF-α, NfκB) in rNLS8 mice and suggested modest benefits of immunization targeting the glycine-rich region. Several novel monoclonal antibodies targeting the glycine-rich domain potently reduced phase separation and aggregation of TDP-43 in vitro and prevented cellular uptake of preformed aggregates. Our unbiased screen suggests that targeting the RRM2 domain and the C-terminal region of TDP-43 by active or passive immunization may be beneficial in TDP-43 proteinopathies by inhibiting cardinal processes of disease progression.


Assuntos
Anticorpos Monoclonais , Filamentos Intermediários , Animais , Camundongos , Epitopos , Imunização , NF-kappa B
3.
EMBO Rep ; 24(8): e55895, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37317656

RESUMO

Hexanucleotide repeat expansions within C9orf72 are a frequent cause of amyotrophic lateral sclerosis and frontotemporal dementia. Haploinsufficiency leading to reduced C9orf72 protein contributes to disease pathogenesis. C9orf72 binds SMCR8 to form a robust complex that regulates small GTPases, lysosomal integrity, and autophagy. In contrast to this functional understanding, we know far less about the assembly and turnover of the C9orf72-SMCR8 complex. Loss of either subunit causes the concurrent ablation of the respective partner. However, the molecular mechanism underlying this interdependence remains elusive. Here, we identify C9orf72 as a substrate of branched ubiquitin chain-dependent protein quality control. We find that SMCR8 prevents C9orf72 from rapid degradation by the proteasome. Mass spectrometry and biochemical analyses reveal the E3 ligase UBR5 and the BAG6 chaperone complex as C9orf72-interacting proteins, which are components of the machinery that modifies proteins with K11/K48-linked heterotypic ubiquitin chains. Depletion of UBR5 results in reduced K11/K48 ubiquitination and increased C9orf72 when SMCR8 is absent. Our data provide novel insights into C9orf72 regulation with potential implication for strategies to antagonize C9orf72 loss during disease progression.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas/genética , Proteínas/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Chaperonas Moleculares/metabolismo
4.
Front Cell Dev Biol ; 11: 1169962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384248

RESUMO

Aggregation of the Tar DNA-binding protein of 43 kDa (TDP-43) is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia and likely contributes to disease by loss of nuclear function. Analysis of TDP-43 function in knockout zebrafish identified an endothelial directional migration and hypersprouting phenotype during development prior lethality. In human umbilical vein cells (HUVEC) the loss of TDP-43 leads to hyperbranching. We identified elevated expression of FIBRONECTIN 1 (FN1), the VASCULAR CELL ADHESION MOLECULE 1 (VCAM1), as well as their receptor INTEGRIN α4ß1 (ITGA4B1) in HUVEC cells. Importantly, reducing the levels of ITGA4, FN1, and VCAM1 homologues in the TDP-43 loss-of-function zebrafish rescues the angiogenic defects indicating the conservation of human and zebrafish TDP-43 function during angiogenesis. Our study identifies a novel pathway regulated by TDP-43 important for angiogenesis during development.

6.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35777956

RESUMO

Ubiquilin-2 (UBQLN2) is a ubiquitin-binding protein that shuttles ubiquitinated proteins to proteasomal and autophagic degradation. UBQLN2 mutations are genetically linked to the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). However, it remains elusive how UBQLN2 mutations cause ALS/FTD. Here, we systematically examined proteomic and transcriptomic changes in patient-derived lymphoblasts and CRISPR/Cas9-engineered HeLa cells carrying ALS/FTD UBQLN2 mutations. This analysis revealed a strong up-regulation of the microtubule-associated protein 1B (MAP1B) which was also observed in UBQLN2 knockout cells and primary rodent neurons depleted of UBQLN2, suggesting that a UBQLN2 loss-of-function mechanism is responsible for the elevated MAP1B levels. Consistent with MAP1B's role in microtubule binding, we detected an increase in total and acetylated tubulin. Furthermore, we uncovered that UBQLN2 mutations result in decreased phosphorylation of MAP1B and of the ALS/FTD-linked fused in sarcoma (FUS) protein at S439 which is critical for regulating FUS-RNA binding and MAP1B protein abundance. Together, our findings point to a deregulated UBQLN2-FUS-MAP1B axis that may link protein homeostasis, RNA metabolism, and cytoskeleton dynamics, three molecular pathomechanisms of ALS/FTD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica , Proteínas Relacionadas à Autofagia , Demência Frontotemporal , Proteínas Associadas aos Microtúbulos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteômica , RNA/genética , RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Cell Rep ; 39(10): 110913, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675776

RESUMO

An intronic (G4C2)n expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia primarily through gain-of-function mechanisms: the accumulation of sense and antisense repeat RNA foci and dipeptide repeat (DPR) proteins (poly-GA/GP/GR/PA/PR) translated from repeat RNA. To therapeutically block this pathway, we screen a library of 1,430 approved drugs and known bioactive compounds in patient-derived induced pluripotent stem cell-derived neurons (iPSC-Neurons) for inhibitors of DPR expression. The clinically used guanosine/cytidine analogs decitabine, entecavir, and nelarabine reduce poly-GA/GP expression, with decitabine being the most potent. Hit compounds nearly abolish sense and antisense RNA foci and reduce expression of the repeat-containing nascent C9orf72 RNA transcript and its mature mRNA with minimal effects on global gene expression, suggesting that they specifically act on repeat transcription. Importantly, decitabine treatment reduces (G4C2)n foci and DPRs in C9orf72 BAC transgenic mice. Our findings suggest that nucleoside analogs are a promising compound class for therapeutic development in C9orf72 repeat-expansion-associated disorders.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA , Decitabina/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/metabolismo , Nucleosídeos/metabolismo , RNA Antissenso/metabolismo
8.
EMBO Rep ; 23(6): e53890, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35438230

RESUMO

Aggregation of the multifunctional RNA-binding protein TDP-43 defines large subgroups of amyotrophic lateral sclerosis and frontotemporal dementia and correlates with neurodegeneration in both diseases. In disease, characteristic C-terminal fragments of ~25 kDa ("TDP-25") accumulate in cytoplasmic inclusions. Here, we analyze gain-of-function mechanisms of TDP-25 combining cryo-electron tomography, proteomics, and functional assays. In neurons, cytoplasmic TDP-25 inclusions are amorphous, and photobleaching experiments reveal gel-like biophysical properties that are less dynamic than nuclear TDP-43. Compared with full-length TDP-43, the TDP-25 interactome is depleted of low-complexity domain proteins. TDP-25 inclusions are enriched in 26S proteasomes adopting exclusively substrate-processing conformations, suggesting that inclusions sequester proteasomes, which are largely stalled and no longer undergo the cyclic conformational changes required for proteolytic activity. Reporter assays confirm that TDP-25 impairs proteostasis, and this inhibitory function is enhanced by ALS-causing TDP-43 mutations. These findings support a patho-physiological relevance of proteasome dysfunction in ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Demência Frontotemporal , Neurônios , Fragmentos de Peptídeos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
9.
EMBO J ; 41(8): e108443, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35112738

RESUMO

Post-translational modifications (PTMs) have emerged as key modulators of protein phase separation and have been linked to protein aggregation in neurodegenerative disorders. The major aggregating protein in amyotrophic lateral sclerosis and frontotemporal dementia, the RNA-binding protein TAR DNA-binding protein (TDP-43), is hyperphosphorylated in disease on several C-terminal serine residues, a process generally believed to promote TDP-43 aggregation. Here, we however find that Casein kinase 1δ-mediated TDP-43 hyperphosphorylation or C-terminal phosphomimetic mutations reduce TDP-43 phase separation and aggregation, and instead render TDP-43 condensates more liquid-like and dynamic. Multi-scale molecular dynamics simulations reveal reduced homotypic interactions of TDP-43 low-complexity domains through enhanced solvation of phosphomimetic residues. Cellular experiments show that phosphomimetic substitutions do not affect nuclear import or RNA regulatory functions of TDP-43, but suppress accumulation of TDP-43 in membrane-less organelles and promote its solubility in neurons. We speculate that TDP-43 hyperphosphorylation may be a protective cellular response to counteract TDP-43 aggregation.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Agregados Proteicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
Mol Psychiatry ; 26(10): 5824-5832, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34561610

RESUMO

Frontotemporal dementia (FTD) is a clinically and genetically heterogeneous disorder. To which extent genetic aberrations dictate clinical presentation remains elusive. We investigated the spectrum of genetic causes and assessed the genotype-driven differences in biomarker profiles, disease severity and clinical manifestation by recruiting 509 FTD patients from different centers of the German FTLD consortium where individuals were clinically assessed including biomarker analysis. Exome sequencing as well as C9orf72 repeat analysis were performed in all patients. These genetic analyses resulted in a diagnostic yield of 18.1%. Pathogenic variants in C9orf72 (n = 47), GRN (n = 26), MAPT (n = 11), TBK1 (n = 5), FUS (n = 1), TARDBP (n = 1), and CTSF (n = 1) were identified across all clinical subtypes of FTD. TBK1-associated FTD was frequent accounting for 5.4% of solved cases. Detection of a homozygous missense variant verified CTSF as an FTD gene. ABCA7 was identified as a candidate gene for monogenic FTD. The distribution of APOE alleles did not differ significantly between FTD patients and the average population. Male sex was weakly associated with clinical manifestation of the behavioral variant of FTD. Age of onset was lowest in MAPT patients. Further, high CSF neurofilament light chain levels were found to be related to GRN-associated FTD. Our study provides large-scale retrospective clinico-genetic data such as on disease manifestation and progression of FTD. These data will be relevant for counseling patients and their families.


Assuntos
Demência Frontotemporal , Proteína C9orf72/genética , Demência Frontotemporal/genética , Genótipo , Humanos , Masculino , Mutação , Estudos Retrospectivos , Sequenciamento do Exoma , Proteínas tau/genética
11.
J Biol Chem ; 297(4): 101120, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450161

RESUMO

GGGGCC (G4C2) repeat expansion in the C9orf72 gene has been shown to cause frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Dipeptide repeat proteins produced through repeat-associated non-AUG (RAN) translation are recognized as potential drivers for neurodegeneration. Therefore, selective inhibition of RAN translation could be a therapeutic avenue to treat these neurodegenerative diseases. It was previously known that the porphyrin TMPyP4 binds to G4C2 repeat RNA. However, the consequences of this interaction have not been well characterized. Here, we confirmed that TMPyP4 inhibits C9orf72 G4C2 repeat translation in cellular and in in vitro translation systems. An artificial insertion of an AUG codon failed to cancel the translation inhibition, suggesting that TMPyP4 acts downstream of non-AUG translation initiation. Polysome profiling assays also revealed polysome retention on G4C2 repeat RNA, along with inhibition of translation, indicating that elongating ribosomes stall on G4C2 repeat RNA. Urea-resistant interaction between G4C2 repeat RNA and TMPyP4 likely contributes to this ribosome stalling and thus to selective inhibition of RAN translation. Taken together, our data reveal a novel mode of action of TMPyP4 as an inhibitor of G4C2 repeat translation elongation.


Assuntos
Proteína C9orf72/biossíntese , Expansão das Repetições de DNA , Modelos Biológicos , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Porfirinas/farmacologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Células HeLa , Humanos , Polirribossomos/metabolismo
12.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34037669

RESUMO

Neuroinflammation is an emerging focus of translational stroke research. Preclinical studies have demonstrated a critical role for brain-invading lymphocytes in post-stroke pathophysiology. Reducing cerebral lymphocyte invasion by anti-CD49d antibodies consistently improves outcome in the acute phase after experimental stroke models. However, clinical trials testing this approach failed to show efficacy in stroke patients for the chronic outcome 3 mo after stroke. Here, we identify a potential mechanistic reason for this phenomenon by detecting chronic T cell accumulation-evading the systemic therapy-in the post-ischemic brain. We observed a persistent accumulation of T cells in mice and human autopsy samples for more than 1 mo after stroke. Cerebral T cell accumulation in the post-ischemic brain was driven by increased local T cell proliferation rather than by T cell invasion. This observation urges re-evaluation of current immunotherapeutic approaches, which target circulating lymphocytes for promoting recovery after stroke.


Assuntos
Encéfalo/imunologia , Encéfalo/patologia , Imunoterapia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/terapia , Linfócitos T/imunologia , Animais , Autopsia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Proliferação de Células , Feminino , Humanos , Integrina alfa4/imunologia , Contagem de Linfócitos , Masculino , Camundongos Endogâmicos C57BL , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/fisiopatologia
13.
Neurobiol Aging ; 103: 147.e1-147.e5, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33789815

RESUMO

Trisomy-21 mosaicism (mT21) with subclinical intellectual development disorder or physical phenotype has very rarely been associated with early-onset cognitive decline. Notably, early-onset Alzheimer's disease (EOAD) patients' family histories frequently suggest genetic causes other than autosomal-dominant APP/PSEN-1/2 mutations. We present an EOAD patient in his late fifties newly diagnosed with low-degree mT21 (13%/21% blood lymphocytes/ectodermal cells). We applied fluorescence in-situ hybridization to confirm a diagnosis of mT21. Multimodal positron-emission-tomography applying 18F-fluodesoxyglucose (metabolism), 18F-florbetaben (amyloid-ß deposits) and 18F-PI-2620 (tau-deposits) tracers was used to confirm a diagnosis of EOAD according to the ATN-criteria of AD. Initial PET-studies revealed marked cerebral amyloid-ß- and tau-pathology and parietotemporal hypometabolism, confirming EOAD according to the ATN-criteria of AD. A marked cognitive decline was accompanied by an increase in tau pathology in follow-up studies. This is the first case demonstrating that a low-degree APP gene-dose increase suffices to cause EOAD with prominent amyloid-ß/tau pathology.


Assuntos
Doença de Alzheimer/genética , Síndrome de Down/genética , Mosaicismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Síndrome de Down/complicações , Síndrome de Down/diagnóstico , Feminino , Seguimentos , Dosagem de Genes , Humanos , Masculino , Neuroimagem , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
14.
Cell Rep ; 33(12): 108538, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33357437

RESUMO

Nuclear import receptors, also called importins, mediate nuclear import of proteins and chaperone aggregation-prone cargoes (e.g., neurodegeneration-linked RNA-binding proteins [RBPs]) in the cytoplasm. Importins were identified as modulators of cellular toxicity elicited by arginine-rich dipeptide repeat proteins (DPRs), an aberrant protein species found in C9orf72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mechanistically, the link between importins and arginine-rich DPRs remains unclear. Here, we show that arginine-rich DPRs (poly-GR and poly-PR) bind directly to multiple importins and, in excess, promote their insolubility and condensation. In cells, poly-GR impairs Impα/ß-mediated nuclear import, including import of TDP-43, an RBP that aggregates in C9orf72-ALS/FTD patients. Arginine-rich DPRs promote phase separation and insolubility of TDP-43 in vitro and in cells, and this pathological interaction is suppressed by elevating importin concentrations. Our findings suggest that importins can decrease toxicity of arginine-rich DPRs by suppressing their pathological interactions.


Assuntos
Arginina/metabolismo , Dipeptídeos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Humanos
15.
EMBO Rep ; 21(10): e50241, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32929860

RESUMO

Single nucleotide polymorphisms (SNPs) in TMEM106B encoding the lysosomal type II transmembrane protein 106B increase the risk for frontotemporal lobar degeneration (FTLD) of GRN (progranulin gene) mutation carriers. Currently, it is unclear if progranulin (PGRN) and TMEM106B are synergistically linked and if a gain or a loss of function of TMEM106B is responsible for the increased disease risk of patients with GRN haploinsufficiency. We therefore compare behavioral abnormalities, gene expression patterns, lysosomal activity, and TDP-43 pathology in single and double knockout animals. Grn-/- /Tmem106b-/- mice show a strongly reduced life span and massive motor deficits. Gene expression analysis reveals an upregulation of molecular signature characteristic for disease-associated microglia and autophagy. Dysregulation of maturation of lysosomal proteins as well as an accumulation of ubiquitinated proteins and widespread p62 deposition suggest that proteostasis is impaired. Moreover, while single Grn-/- knockouts only occasionally show TDP-43 pathology, the double knockout mice exhibit deposition of phosphorylated TDP-43. Thus, a loss of function of TMEM106B may enhance the risk for GRN-associated FTLD by reduced protein turnover in the lysosomal/autophagic system.


Assuntos
Degeneração Lobar Frontotemporal , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Degeneração Lobar Frontotemporal/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lisossomos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso , Progranulinas/genética
16.
Acta Neuropathol ; 140(2): 121-142, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32562018

RESUMO

Expansion of a (G4C2)n repeat in C9orf72 causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the link of the five repeat-encoded dipeptide repeat (DPR) proteins to neuroinflammation, TDP-43 pathology, and neurodegeneration is unclear. Poly-PR is most toxic in vitro, but poly-GA is far more abundant in patients. To directly compare these in vivo, we created congenic poly-GA and poly-PR mice. 40% of poly-PR mice were affected with ataxia and seizures, requiring euthanasia by 6 weeks of age. The remaining poly-PR mice were asymptomatic at 14 months of age, likely due to an 80% reduction of the transgene mRNA in this subgroup. In contrast, all poly-GA mice showed selective neuron loss, inflammation, as well as muscle denervation and wasting requiring euthanasia before 7 weeks of age. In-depth analysis of peripheral organs and blood samples suggests that peripheral organ failure does not drive these phenotypes. Although transgene mRNA levels were similar between poly-GA and affected poly-PR mice, poly-GA aggregated far more abundantly than poly-PR in the CNS and was also found in skeletal muscle. In addition, TDP-43 and other disease-linked RNA-binding proteins co-aggregated in rare nuclear inclusions in the hippocampus and frontal cortex only in poly-GA mice. Transcriptome analysis revealed activation of an interferon-responsive pro-inflammatory microglial signature in end-stage poly-GA but not poly-PR mice. This signature was also found in all ALS patients and enriched in C9orf72 cases. In summary, our rigorous comparison of poly-GA and poly-PR toxicity in vivo indicates that poly-GA, but not poly-PR at the same mRNA expression level, promotes interferon responses in C9orf72 disease and contributes to TDP-43 abnormalities and neuron loss selectively in disease-relevant regions.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Interferons/biossíntese , Degeneração Neural/patologia , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Animais , Expansão das Repetições de DNA/genética , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/imunologia , Neurônios/patologia
17.
EMBO Mol Med ; 12(5): e10722, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32347002

RESUMO

The most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic hexanucleotide repeat expansion in the C9orf72 gene. In disease, RNA transcripts containing this expanded region undergo repeat-associated non-AUG translation to produce dipeptide repeat proteins (DPRs), which are detected in brain and spinal cord of patients and are neurotoxic both in vitro and in vivo paradigms. We reveal here a novel pathogenic mechanism for the most abundantly detected DPR in ALS/FTD autopsy tissues, poly-glycine-alanine (GA). Previously, we showed motor dysfunction in a GA mouse model without loss of motor neurons. Here, we demonstrate that mobile GA aggregates are present within neurites, evoke a reduction in synaptic vesicle-associated protein 2 (SV2), and alter Ca2+ influx and synaptic vesicle release. These phenotypes could be corrected by restoring SV2 levels. In GA mice, loss of SV2 was observed without reduction of motor neuron number. Notably, reduction in SV2 was seen in cortical and motor neurons derived from patient induced pluripotent stem cell lines, suggesting synaptic alterations also occur in patients.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Alanina , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Dipeptídeos , Demência Frontotemporal/genética , Glicina , Humanos , Camundongos , Neurônios Motores
18.
EMBO J ; 39(8): e102811, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32175624

RESUMO

The C9orf72 repeat expansion causes amyotrophic lateral sclerosis and frontotemporal dementia, but the poor correlation between C9orf72-specific pathology and TDP-43 pathology linked to neurodegeneration hinders targeted therapeutic development. Here, we addressed the role of the aggregating dipeptide repeat proteins resulting from unconventional translation of the repeat in all reading frames. Poly-GA promoted cytoplasmic mislocalization and aggregation of TDP-43 non-cell-autonomously, and anti-GA antibodies ameliorated TDP-43 mislocalization in both donor and receiver cells. Cell-to-cell transmission of poly-GA inhibited proteasome function in neighboring cells. Importantly, proteasome inhibition led to the accumulation of TDP-43 ubiquitinated within the nuclear localization signal (NLS) at lysine 95. Mutagenesis of this ubiquitination site completely blocked poly-GA-dependent mislocalization of TDP-43. Boosting proteasome function with rolipram reduced both poly-GA and TDP-43 aggregation. Our data from cell lines, primary neurons, transgenic mice, and patient tissue suggest that poly-GA promotes TDP-43 aggregation by inhibiting the proteasome cell-autonomously and non-cell-autonomously, which can be prevented by inhibiting poly-GA transmission with antibodies or boosting proteasome activity with rolipram.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/patologia , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/genética , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Demência Frontotemporal/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Sinais de Localização Nuclear , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas , Ubiquitina/metabolismo
19.
Stem Cell Reports ; 14(3): 390-405, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32084385

RESUMO

In amyotrophic lateral sclerosis (ALS) motor neurons (MNs) undergo dying-back, where the distal axon degenerates before the soma. The hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of ALS, but the mechanism of pathogenesis is largely unknown with both gain- and loss-of-function mechanisms being proposed. To better understand C9ORF72-ALS pathogenesis, we generated isogenic induced pluripotent stem cells. MNs with HRE in C9ORF72 showed decreased axonal trafficking compared with gene corrected MNs. However, knocking out C9ORF72 did not recapitulate these changes in MNs from healthy controls, suggesting a gain-of-function mechanism. In contrast, knocking out C9ORF72 in MNs with HRE exacerbated axonal trafficking defects and increased apoptosis as well as decreased levels of HSP70 and HSP40, and inhibition of HSPs exacerbated ALS phenotypes in MNs with HRE. Therefore, we propose that the HRE in C9ORF72 induces ALS pathogenesis via a combination of gain- and loss-of-function mechanisms.


Assuntos
Axônios/metabolismo , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Proteína C9orf72/metabolismo , Diferenciação Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Mutação com Ganho de Função/genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/patologia , Pirrolidinonas/farmacologia , Transcriptoma/genética
20.
Acta Neuropathol ; 139(1): 99-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642962

RESUMO

Repeat expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Expanded sense and antisense repeat RNA transcripts in C9orf72 are translated into five dipeptide-repeat proteins (DPRs) in an AUG-independent manner. We previously identified the heterogeneous ribonucleoprotein (hnRNP) A3 as an interactor of the sense repeat RNA that reduces its translation into DPRs. Furthermore, we found that hnRNPA3 is depleted from the nucleus and partially mislocalized to cytoplasmic poly-GA inclusions in C9orf72 patients, suggesting that poly-GA sequesters hnRNPA3 within the cytoplasm. We now demonstrate that hnRNPA3 also binds to the antisense repeat RNA. Both DPR production and deposition from sense and antisense RNA repeats are increased upon hnRNPA3 reduction. All DPRs induced DNA double strand breaks (DSB), which was further enhanced upon reduction of hnRNPA3. Poly-glycine-arginine and poly-proline-arginine increased foci formed by phosphorylated Ataxia Telangiectasia Mutated (pATM), a major sensor of DSBs, whereas poly-glycine-alanine (poly-GA) evoked a reduction of pATM foci. In dentate gyri of C9orf72 patients, lower nuclear hnRNPA3 levels were associated with increased DNA damage. Moreover, enhanced poly-GA deposition correlated with reduced pATM foci. Since cytoplasmic pATM deposits partially colocalized with poly-GA deposits, these results suggest that poly-GA, the most frequent DPR observed in C9orf72 patients, differentially causes DNA damage and that poly-GA selectively sequesters pATM in the cytoplasm inhibiting its recruitment to sites of DNA damage. Thus, mislocalization of nuclear hnRNPA3 caused by poly-GA leads to increased poly-GA production, which partially depletes pATM, and consequently enhances DSB.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína C9orf72/genética , Repetições de Dinucleotídeos/fisiologia , Degeneração Lobar Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Dano ao DNA/genética , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...