Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
J Neurosci ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134417

RESUMO

Cognitive flexibility represents the capacity to switch among different mental schemes, providing an adaptive advantage to a changing environment. The neural underpinnings of this executive function have been deeply studied in humans through fMRI, showing that the left inferior frontal cortex (IFC) and the left inferior parietal lobe (IPL) are crucial. Here, we investigated the inhibitory-excitatory balance in these regions by means of γ-aminobutyric acid (GABA+) and glutamate + glutamine (Glx), measured with magnetic resonance spectroscopy (MRS), during a cognitive flexibility task and its relationship with performance level and the local task-induced blood-oxygen level dependent (BOLD) response in 40 young (18-35 y.o.; 26 female) and 40 older (18-35 y.o.; 21 female) human adults. As the IFC and the IPL are richly connected regions, we also examined whole-brain effects associated with their local metabolic activity. Results did not show absolute metabolic modulations associated with flexibility performance, but performance level was related to the direction of metabolic modulation in the IPL with opposite patterns in young and older individuals. The individual inhibitory-excitatory balance modulation showed an inverse relationship with the local BOLD response in the IPL. Finally, the modulation of inhibitory-excitatory balance in IPL was related to whole-brain effects only in older individuals. These findings show disparities in the metabolic mechanisms underlying cognitive flexibility in young and older adults and their association with performance level and BOLD response. Such metabolic differences are likely to play a role in executive functioning during aging and specifically in cognitive flexibility.Significance Statement Cognitive flexibility provides an advantage in adapting to changing environments. We investigated the inhibitory-excitatory balance (GABA+/Glx) modulation in the frontal and parietal cortices during cognitive flexibility in young and older individuals through MRS. An increase in the excitatory tone during cognitive performance related to a better execution in younger adults. Interestingly, it was an increase in the inhibitory tone that was associated to a better performance in older adults. Furthermore, we revealed that an increased inhibitory tone in older adults related to a decreased oxygen consumption in remote brain areas (BOLD-fMRI). This may suggest that GABA modulation facilitates the segregation of neural networks, maximizing brain efficiency and cognitive performance. These findings underscore age-related disparities in the neurometabolic mechanisms underlying cognitive flexibility.

2.
PLoS One ; 19(8): e0308792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39146282

RESUMO

BACKGROUND: The neurobiological underpinnings of Autism Spectrum Disorder (ASD) are diverse and likely multifactorial. One possible mechanism is increased oxidative stress leading to altered neurodevelopment and brain function. However, this hypothesis has mostly been tested in post-mortem studies. So far, available in vivo studies in autistic individuals have reported no differences in glutathione (GSH) levels in frontal, occipital, and subcortical regions. However, these studies were limited by the technically challenging quantification of GSH, the main brain antioxidant molecule. This study aimed to overcome previous studies' limitations by using a GSH-tailored spectroscopy sequence and optimised quantification methodology to provide clarity on GSH levels in autistic adults. METHODS: We used spectral editing proton-magnetic resonance spectroscopy (1H-MRS) combined with linear combination model fitting to quantify GSH in the dorsomedial prefrontal cortex (DMPFC) and medial occipital cortex (mOCC) of autistic and non-autistic adults (male and female). We compared GSH levels between groups. We also examined correlations between GSH and current autism symptoms, measured using the Autism Quotient (AQ). RESULTS: Data were available from 31 adult autistic participants (24 males, 7 females) and 40 non-autistic participants (21 males, 16 females); the largest sample to date. The GSH levels did not differ between groups in either region. No correlations with AQ were observed. CONCLUSION: GSH levels as measured using 1H-MRS are unaltered in the DMPFC and mOCC regions of autistic adults, suggesting that oxidative stress in these cortical regions is not a marked neurobiological signature of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Glutationa , Lobo Occipital , Humanos , Masculino , Feminino , Glutationa/metabolismo , Glutationa/análise , Adulto , Lobo Occipital/metabolismo , Lobo Occipital/diagnóstico por imagem , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Adulto Jovem , Espectroscopia de Prótons por Ressonância Magnética , Lobo Frontal/metabolismo , Estresse Oxidativo , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem
3.
bioRxiv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979133

RESUMO

Purpose: Relaxation correction is crucial for accurately estimating metabolite concentrations measured using in vivo magnetic resonance spectroscopy (MRS). However, the majority of MRS quantification routines assume that relaxation values remain constant across the lifespan, despite prior evidence of T2 changes with aging for multiple of the major metabolites. Here, we comprehensively investigate correlations between T2 and age in a large, multi-site cohort. Methods: We recruited approximately 10 male and 10 female participants from each decade of life: 18-29, 30-39, 40-49, 50-59, and 60+ years old (n=101 total). We collected PRESS data at 8 TEs (30, 50, 74, 101, 135, 179, 241, and 350 ms) from voxels placed in white-matter-rich centrum semiovale (CSO) and gray-matter-rich posterior cingulate cortex (PCC). We quantified metabolite amplitudes using Osprey and fit exponential decay curves to estimate T2. Results: Older age was correlated with shorter T2 for tNAA, tCr3.0, tCr3.9, tCho, Glx, and tissue water in CSO and PCC; rs = -0.21 to -0.65, all p<0.05, FDR-corrected for multiple comparisons. These associations remained statistically significant when controlling for cortical atrophy. T2 values did not differ across the adult lifespan for mI. By region, T2 values were longer in the CSO for tNAA, tCr3.0, tCr3.9, Glx, and tissue water and longer in the PCC for tCho and mI. Conclusion: These findings underscore the importance of considering metabolite T2 changes with aging in MRS quantification. We suggest that future 3T work utilize the equations presented here to estimate age-specific T2 values instead of relying on uniform default values.

4.
Magn Reson Med ; 92(5): 2222-2236, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38988088

RESUMO

PURPOSE: Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear-combination model (2D-LCM) of individual transients ("model-based FPC"). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates. METHODS: We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground-truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data. RESULTS: 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of FPC and amplitudes performed substantially better at low-to-very-low SNR. CONCLUSION: Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, for example, long TEs or strong diffusion weighting.


Assuntos
Algoritmos , Encéfalo , Razão Sinal-Ruído , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Lineares , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos
5.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39073381

RESUMO

Cognitive impairment affects 29-67% of patients with neuromyelitis optica spectrum disorder. Previous studies have reported glutamate homeostasis disruptions in astrocytes, leading to imbalances in gamma-aminobutyric acid levels. However, the association between these neurotransmitter changes and cognitive deficits remains inadequately elucidated. Point RESolved Spectroscopy and Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy techniques were utilized to evaluate gamma-aminobutyric acid, glutamate, glutathione levels, and excitation/inhibition balance in the anterior cingulate cortex, posterior cingulate cortex, and occipital cortex of 39 neuromyelitis optica spectrum disorder patients and 41 healthy controls. Cognitive function was assessed using neurocognitive scales. Results showed decreased gamma-aminobutyric acid levels alongside increased glutamate, glutathione, and excitation/inhibition ratio in the anterior cingulate cortex and posterior cingulate cortex of neuromyelitis optica spectrum disorder patients. Specifically, within the posterior cingulate cortex of neuromyelitis optica spectrum disorder patients, decreased gamma-aminobutyric acid levels and increased excitation/inhibition ratio correlated significantly with anxiety scores, whereas glutathione levels predicted diminished executive function. The results suggest that neuromyelitis optica spectrum disorder patients exhibit dysregulation in the GABAergic and glutamatergic systems in their brains, where the excitation/inhibition imbalance potentially acts as a neuronal metabolic factor contributing to emotional disorders. Additionally, glutathione levels in the posterior cingulate cortex region may serve as predictors of cognitive decline, highlighting the potential benefits of reducing oxidative stress to safeguard cognitive function in neuromyelitis optica spectrum disorder patients.


Assuntos
Ácido Glutâmico , Giro do Cíngulo , Espectroscopia de Ressonância Magnética , Neuromielite Óptica , Ácido gama-Aminobutírico , Humanos , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Feminino , Adulto , Neuromielite Óptica/metabolismo , Neuromielite Óptica/diagnóstico por imagem , Masculino , Ácido Glutâmico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Pessoa de Meia-Idade , Ácido gama-Aminobutírico/metabolismo , Glutationa/metabolismo , Adulto Jovem , Neurotransmissores/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/diagnóstico por imagem
6.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38854088

RESUMO

Background: Anorexia nervosa (AN) is a mental and behavioral health condition characterized by an intense fear of weight or fat gain, severe restriction of food intake resulting in low body weight, and distorted self-perception of body shape or weight. While substantial research has focused on general anxiety in AN, less is known about eating-related anxiety and its underlying neural mechanisms. Therefore, we sought to characterize anxiety-to-eat in AN and examine the neurometabolic profile within the dorsal anterior cingulate cortex (dACC), a brain region putatively involved in magnifying the threat response. Methods: Women seeking inpatient treatment for AN and women of healthy weight without a lifetime history of an eating disorder (healthy controls; HC) completed a computer-based behavioral task assessing anxiety-to-eat in response to images of higher (HED) and lower (LED) energy density foods. Participants also underwent magnetic resonance spectroscopy of the dACC in a 3 Tesla scanner. Results: The AN group reported greater anxiety to eat HED and LED foods relative to the HC group. Both groups reported greater anxiety to eat HED foods relative to LED foods. The neurometabolite myo-inositol (mI) was lower in the dACC in AN relative to HC, and mI levels negatively predicted anxiety to eat HED but not LED foods in the AN group only. mI levels in the dACC were independent of body weight, body mass, and general anxiety. Conclusions: These findings provide critical new insight into the clinically challenging feature and underlying neural mechanisms of eating-related anxiety and indicate mI levels in the dACC could serve as a novel biomarker of illness severity that is independent of body weight to identify individuals vulnerable to disordered eating or eating pathology as well as a potential therapeutic target.

7.
J Neurosci Methods ; 409: 110206, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942238

RESUMO

BACKGROUND: To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. METHODS: ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T2 correction based on the dual-TE water integrals were compared with: 1) T2 correction based on the default white matter and gray matter T2 reference values in Osprey and 2) shorter WM and GM T2 values from recent literature. RESULTS: No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T2 correction based on shorter T2 values showed better agreement to the dual-TE water integral ratio. CONCLUSIONS: ISTHMUS facilitated data acquisition and post-processing and reduced operator workload to eliminate potential human error.


Assuntos
Espectroscopia de Ressonância Magnética , Humanos , Feminino , Adulto , Masculino , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Adulto Jovem , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia
8.
Diabetes ; 73(8): 1317-1324, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776434

RESUMO

Alterations in the structure, function, and microcirculation of the thalamus, a key brain region involved in pain pathways, have previously been demonstrated in patients with painless and painful diabetic peripheral neuropathy (DPN). However, thalamic neurotransmitter levels including γ-aminobutyric acid (GABA) (inhibitory neurotransmitter) and glutamate (excitatory neurotransmitter) in different DPN phenotypes are not known. We performed a magnetic resonance spectroscopy study and quantified GABA and glutamate levels within the thalamus, in a carefully characterized cohort of participants with painless and painful DPN. Participants with DPN (painful and painless combined) had a significantly lower GABA:H2O ratio compared with those without DPN (healthy volunteers [HV] and participants with diabetes without DPN [no DPN]). Participants with painless DPN had the lowest GABA:H2O ratio, which reached significance compared with HV and no DPN, but not painful DPN. There was no difference in GABA:H2O in painful DPN compared with all other groups. A significant correlation with GABA:H2O and neuropathy severity was also seen. This study demonstrates that lower levels of thalamic GABA in participants with painless DPN may reflect neuroplasticity due to reduced afferent pain impulses, whereas partially preserved levels of GABA in painful DPN may indicate that central GABAergic pathways are involved in the mechanisms of neuropathic pain in diabetes.


Assuntos
Neuropatias Diabéticas , Tálamo , Ácido gama-Aminobutírico , Humanos , Neuropatias Diabéticas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Tálamo/metabolismo , Idoso , Espectroscopia de Ressonância Magnética , Adulto , Ácido Glutâmico/metabolismo
9.
Magn Reson Med ; 92(4): 1456-1470, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38748853

RESUMO

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.


Assuntos
Amidas , Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Amidas/química , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagem Ecoplanar/métodos , Glioma/diagnóstico por imagem , Algoritmos , Razão Sinal-Ruído , Neoplasias Encefálicas/diagnóstico por imagem , Adulto , Processamento de Imagem Assistida por Computador/métodos , Masculino , Feminino , Guanidina/química
10.
Magn Reson Med ; 92(4): 1348-1362, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38818623

RESUMO

PURPOSE: The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS. METHODS: To address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants. RESULTS: Both the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%). CONCLUSIONS: Our results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.


Assuntos
Substâncias Macromoleculares , Ácido gama-Aminobutírico , Ácido gama-Aminobutírico/metabolismo , Humanos , Feminino , Adulto , Masculino , Substâncias Macromoleculares/metabolismo , Espectroscopia de Ressonância Magnética , Distribuição Normal , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Modelos Lineares , Algoritmos , Adulto Jovem
11.
EBioMedicine ; 104: 105160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788630

RESUMO

BACKGROUND: Hearing impairment is a common condition in the elderly. However, a comprehensive understanding of its neural correlates is still lacking. METHODS: We recruited 284 elderly adults who underwent structural MRI, magnetic resonance spectroscopy, audiometry, and cognitive assessments. Individual hearing abilities indexed by pure tone average (PTA) were correlated with multiple structural MRI-derived cortical morphological indices. For regions showing significant correlations, mediation analyses were performed to examine their role in the relationship between hearing ability and cognitive function. Finally, the correlation maps between hearing ability and cortical morphology were linked with publicly available connectomic gradient, transcriptomic, and neurotransmitter maps. FINDINGS: Poorer hearing was related to cortical thickness (CT) reductions in widespread regions and gyrification index (GI) reductions in the right Area 52 and Insular Granular Complex. The GI in the right Area 52 mediated the relationship between hearing ability and executive function. This mediating effect was further modulated by glutamate and N-acetylaspartate levels in the right auditory region. The PTA-CT correlation map followed microstructural connectomic hierarchy, were related to genes involved in certain biological processes (e.g., glutamate metabolic process), cell types (e.g., excitatory neurons and astrocytes), and developmental stages (i.e., childhood to young adulthood), and covaried with dopamine receptor 1, dopamine transporter, and fluorodopa. The PTA-GI correlation map was related to 5-hydroxytryptamine receptor 2a. INTERPRETATION: Poorer hearing is associated with cortical thinning and folding reductions, which may be engaged in the relationship between hearing impairment and cognitive decline in the elderly and have different neurobiological substrates. FUNDING: See the Acknowledgements section.


Assuntos
Córtex Cerebral , Cognição , Imageamento por Ressonância Magnética , Humanos , Idoso , Masculino , Feminino , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/metabolismo , Audição , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Perda Auditiva/etiologia , Conectoma , Pessoa de Meia-Idade , Mapeamento Encefálico , Idoso de 80 Anos ou mais
12.
Neuroimage ; 293: 120632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701994

RESUMO

During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combat OS. However, how brain GSH levels vary with age and their associations with cognitive function is unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate extended and closed forms GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (extended form, 166 females, age range 20-70 years) and 15 healthy participants (closed form, 7 females, age range 26-56 years), and examined their relationships with age and cognitive function. The results revealed decreased extended form GSH levels with age in the PCC among 276 participants. Notably, the timecourse of extended form GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between extended form GSH levels in the PCC and OC and visuospatial memory. Additionally, a decreased trend of closed form GSH levels with age was also observed in the PCC among 15 participants. Taken together, these findings enhance our understanding of the brain both closed and extended form GSH time course during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of healthy aging.


Assuntos
Envelhecimento , Glutationa , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Idoso , Glutationa/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Adulto Jovem , Memória Espacial/fisiologia , Lobo Occipital/metabolismo , Giro do Cíngulo/metabolismo , Encéfalo/metabolismo
13.
NMR Biomed ; 37(9): e5152, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38565525

RESUMO

Relaxation correction is an integral step in quantifying brain metabolite concentrations measured by in vivo magnetic resonance spectroscopy (MRS). While most quantification routines assume constant T1 relaxation across age, it is possible that aging alters T1 relaxation rates, as is seen for T2 relaxation. Here, we investigate the age dependence of metabolite T1 relaxation times at 3 T in both gray- and white-matter-rich voxels using publicly available metabolite and metabolite-nulled (single inversion recovery TI = 600 ms) spectra acquired at 3 T using Point RESolved Spectroscopy (PRESS) localization. Data were acquired from voxels in the posterior cingulate cortex (PCC) and centrum semiovale (CSO) in 102 healthy volunteers across 5 decades of life (aged 20-69 years). All spectra were analyzed in Osprey v.2.4.0. To estimate T1 relaxation times for total N-acetyl aspartate at 2.0 ppm (tNAA2.0) and total creatine at 3.0 ppm (tCr3.0), the ratio of modeled metabolite residual amplitudes in the metabolite-nulled spectrum to the full metabolite signal was calculated using the single-inversion-recovery signal equation. Correlations between T1 and subject age were evaluated. Spearman correlations revealed that estimated T1 relaxation times of tNAA2.0 (rs = -0.27; p < 0.006) and tCr3.0 (rs = -0.40; p < 0.001) decreased significantly with age in white-matter-rich CSO, and less steeply for tNAA2.0 (rs = -0.228; p = 0.005) and (not significantly for) tCr3.0 (rs = -0.13; p = 0.196) in graymatter-rich PCC. The analysis harnessed a large publicly available cross-sectional dataset to test an important hypothesis, that metabolite T1 relaxation times change with age. This preliminary study stresses the importance of further work to measure age-normed metabolite T1 relaxation times for accurate quantification of metabolite levels in studies of aging.


Assuntos
Espectroscopia de Ressonância Magnética , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Feminino , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Longevidade , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem
14.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659947

RESUMO

Background: To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. Methods: ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T2 correction based on the dual-TE water integrals were compared with: 1) T2 correction based the default white matter and gray matter T2 reference values in Osprey; 2) shorter WM and GM T2 values from recent literature; and 3) reduced CSF fractions. Results: No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T2 correction based on shorter T2 values showed better agreement to the dual-TE water integral ratio. Conclusions: ISTHMUS facilitated and standardized acquisition and post-processing and reduced operator workload to eliminate potential human error.

15.
Sleep Med ; 119: 1-8, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626481

RESUMO

OBJECTIVE: To compare the GABA+/Glx (glutamate-glutamine) ratio in the prefrontal lobe under non-rapid eye movement sleep between patients with narcolepsy type 1 (NT1) and normal controls and explore the correlation between this difference and abnormal cognitive function, using synchronous electroencephalography-functional magnetic resonance spectroscopy (EEG-fMRS). METHODS: MRS measurements of GABA+ and Glx concentrations as well as synchronous EEG data were obtained from 26 medication-naive patients with NT1 and 29 sex- and age-matched healthy community volunteers. Cognition was appraised with the Beijing version of the Montreal Cognitive Assessment, and daytime sleepiness was measured using the Epworth Sleepiness Scale. All subjects recorded a 2-week sleep log as well as an overnight polysomnography within 1 week before MR scanning to understand their sleep habits and determine sleep stages. After PSG, they also underwent multiple sleep latency trials. Patient/control group differences in the individual measurements of GABA+ and Glx and the GABA+/Glx ratio and their relationship with cognition were assessed. RESULTS: The GABA+/Glx ratio and GABA + levels of patients with narcolepsy were higher than those of the control group (P<0.0001 and P = 0.0008, respectively). However, there was no significant difference in Glx levels (P = 0.6360). The GABA+/Glx ratio negatively correlated with abnormal cognitive function (r = -0.6710, P = 0.0002). Moreover, GABA + levels were inversely proportional to rapid eye movement sleep latency (REML) in patients with narcolepsy (r = -0.5019, P = 0.0106). CONCLUSION: The GABA+/Glx ratio in the prefrontal lobe was higher in NT1 patients during N2 sleep than in normal controls, mainly caused by GABA + levels; this ratio was negatively related to abnormal cognitive function. In addition, GABA + levels were inversely proportional to REML.


Assuntos
Eletroencefalografia , Ácido Glutâmico , Glutamina , Espectroscopia de Ressonância Magnética , Narcolepsia , Polissonografia , Ácido gama-Aminobutírico , Humanos , Narcolepsia/metabolismo , Narcolepsia/fisiopatologia , Masculino , Feminino , Adulto , Ácido gama-Aminobutírico/metabolismo , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Cognição/fisiologia , Pessoa de Meia-Idade , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/metabolismo , Estudos de Casos e Controles
16.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585798

RESUMO

Purpose: Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a two-dimensional linear-combination model (2D-LCM) of individual transients ('model-based FPC'). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates. Methods: We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the standard deviation of those ground-truth errors, and amplitude Cramér Rao Lower Bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data. Results: 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of frequency and phase correction and amplitudes performed substantially better at low-to-very-low SNR. Conclusion: Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, e.g., long TEs or strong diffusion weighting.

17.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430105

RESUMO

Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.


Assuntos
Ácido Glutâmico , Glutamina , Criança , Humanos , Adolescente , Adulto Jovem , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido Glutâmico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colina/metabolismo , Creatina/metabolismo , Inositol/metabolismo , Ácido gama-Aminobutírico/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Ácido Aspártico/metabolismo
18.
Sci Rep ; 14(1): 3251, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331950

RESUMO

We aimed to investigate transfer of learning, whereby previously acquired skills impact new task learning. While it has been debated whether such transfer may yield positive, negative, or no effects on performance, very little is known about the underlying neural mechanisms, especially concerning the role of inhibitory (GABA) and excitatory (Glu) (measured as Glu + glutamine (Glx)) neurometabolites, as measured by magnetic resonance spectroscopy (MRS). Participants practiced a bimanual coordination task across four days. The Experimental group trained a task variant with the right hand moving faster than the left (Task A) for three days and then switched to the opposite variant (Task B) on Day4. The control group trained Task B across four days. MRS data were collected before, during, and after task performance on Day4 in the somatosensory (S1) and visual (MT/V5) cortex. Results showed that both groups improved performance consistently across three days. On Day4, the Experimental group experienced performance decline due to negative task transfer while the control group continuously improved. GABA and Glx concentrations obtained during task performance showed no significant group-level changes. However, individual Glx levels during task performance correlated with better (less negative) transfer performance. These findings provide a first window into the neurochemical mechanisms underlying task transfer.


Assuntos
Glutamina , Transferência de Experiência , Humanos , Espectroscopia de Ressonância Magnética/métodos , Aprendizagem , Ácido gama-Aminobutírico , Ácido Glutâmico
19.
Mol Psychiatry ; 29(4): 939-950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182806

RESUMO

Previous studies reported decreased glutamate levels in the anterior cingulate cortex (ACC) in non-treatment-resistant schizophrenia and first-episode psychosis. However, ACC glutamatergic changes in subjects at high-risk for psychosis, and the effects of commonly experienced environmental emotional/social stressors on glutamatergic function in adolescents remain unclear. In this study, adolescents recruited from the general population underwent proton magnetic resonance spectroscopy (MRS) of the pregenual ACC using a 3-Tesla scanner. We explored longitudinal data on the association of combined glutamate-glutamine (Glx) levels, measured by MRS, with subclinical psychotic experiences. Moreover, we investigated associations of bullying victimization, a risk factor for subclinical psychotic experiences, and help-seeking intentions, a coping strategy against stressors including bullying victimization, with Glx levels. Finally, path analyses were conducted to explore multivariate associations. For a contrast analysis, gamma-aminobutyric acid plus macromolecule (GABA+) levels were also analyzed. Negative associations were found between Glx levels and subclinical psychotic experiences at both Times 1 (n = 219, mean age 11.5 y) and 2 (n = 211, mean age 13.6 y), as well as for over-time changes (n = 157, mean interval 2.0 y). Moreover, effects of bullying victimization and bullying victimization × help-seeking intention interaction effects on Glx levels were found (n = 156). Specifically, bullying victimization decreased Glx levels, whereas help-seeking intention increased Glx levels only in bullied adolescents. Finally, associations among bullying victimization, help-seeking intention, Glx levels, and subclinical psychotic experiences were revealed. GABA+ analysis revealed no significant results. This is the first adolescent study to reveal longitudinal trajectories of the association between glutamatergic function and subclinical psychotic experiences and to elucidate the effect of commonly experienced environmental emotional/social stressors on glutamatergic function. Our findings may deepen the understanding of how environmental emotional/social stressors induce impaired glutamatergic neurotransmission that could be the underpinning of liability for psychotic experiences in early adolescence.


Assuntos
Bullying , Vítimas de Crime , Ácido Glutâmico , Giro do Cíngulo , Transtornos Psicóticos , Humanos , Giro do Cíngulo/metabolismo , Adolescente , Masculino , Feminino , Transtornos Psicóticos/metabolismo , Ácido Glutâmico/metabolismo , Bullying/psicologia , Vítimas de Crime/psicologia , Estudos Longitudinais , Criança , Glutamina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Fatores de Risco , Esquizofrenia/metabolismo , Espectroscopia de Ressonância Magnética/métodos
20.
Autism Res ; 17(3): 512-528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279628

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Espectroscopia de Ressonância Magnética/métodos , Transtorno Autístico/metabolismo , Encéfalo , Glutationa/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA