Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 678, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909042

RESUMO

Dicytostelium firmibasis is a member of Dictyostelia, a group of social amoebae that upon starvation display aggregative multicellularity where the amoebae transition from uni- to multicellular life. The D. firmibasis genome assembly that is currently available is of limited use due to its low contiguity, large number of undetermined bases, and lack of annotations. Here we used Nanopore long read sequencing, complemented with Illumina sequencing, and developmental transcriptomics as well as small RNA-sequencing, to present a new, fully annotated, chromosome-level D. firmibasis genome assembly. The new assembly contains no undetermined bases, and consists mainly of six large contigs representing the chromosomes, as well as a complete mitochondrial genome. This new genome assembly will be a valuable tool, allowing comprehensive comparison to Dictyostelium discoideum, the dictyostelid genetically tractable model. Further, the new genome will be important for studies of evolutionary processes governing the transition from unicellular to multicellular organisms and will aid in the sequencing and annotation of other dictyostelids genomes, many of which are currently of poor quality.


Assuntos
Cromossomos , Dictyostelium , Genoma de Protozoário , Dictyostelium/genética , Anotação de Sequência Molecular
2.
Nucleic Acids Res ; 52(6): 3121-3136, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375870

RESUMO

MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in both plants and animals. They are thought to have evolved convergently in these lineages and hypothesized to have played a role in the evolution of multicellularity. In line with this hypothesis, miRNAs have so far only been described in few unicellular eukaryotes. Here, we investigate the presence and evolution of miRNAs in Amoebozoa, focusing on species belonging to Acanthamoeba, Physarum and dictyostelid taxonomic groups, representing a range of unicellular and multicellular lifestyles. miRNAs that adhere to both the stringent plant and animal miRNA criteria were identified in all examined amoebae, expanding the total number of protists harbouring miRNAs from 7 to 15. We found conserved miRNAs between closely related species, but the majority of species feature only unique miRNAs. This shows rapid gain and/or loss of miRNAs in Amoebozoa, further illustrated by a detailed comparison between two evolutionary closely related dictyostelids. Additionally, loss of miRNAs in the Dictyostelium discoideum drnB mutant did not seem to affect multicellular development and, hence, demonstrates that the presence of miRNAs does not appear to be a strict requirement for the transition from uni- to multicellular life.


Assuntos
Amebozoários , Evolução Molecular , MicroRNAs , RNA de Protozoário , Amebozoários/classificação , Amebozoários/genética , Dictyostelium/genética , MicroRNAs/genética , Filogenia , RNA de Protozoário/genética , Sequência Conservada/genética , Interferência de RNA
3.
BMC Genomics ; 20(1): 961, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823727

RESUMO

BACKGROUND: During infection by intracellular pathogens, a highly complex interplay occurs between the infected cell trying to degrade the invader and the pathogen which actively manipulates the host cell to enable survival and proliferation. Many intracellular pathogens pose important threats to human health and major efforts have been undertaken to better understand the host-pathogen interactions that eventually determine the outcome of the infection. Over the last decades, the unicellular eukaryote Dictyostelium discoideum has become an established infection model, serving as a surrogate macrophage that can be infected with a wide range of intracellular pathogens. In this study, we use high-throughput RNA-sequencing to analyze the transcriptional response of D. discoideum when infected with Mycobacterium marinum and Legionella pneumophila. The results were compared to available data from human macrophages. RESULTS: The majority of the transcriptional regulation triggered by the two pathogens was found to be unique for each bacterial challenge. Hallmark transcriptional signatures were identified for each infection, e.g. induction of endosomal sorting complexes required for transport (ESCRT) and autophagy genes in response to M. marinum and inhibition of genes associated with the translation machinery and energy metabolism in response to L. pneumophila. However, a common response to the pathogenic bacteria was also identified, which was not induced by non-pathogenic food bacteria. Finally, comparison with available data sets of regulation in human monocyte derived macrophages shows that the elicited response in D. discoideum is in many aspects similar to what has been observed in human immune cells in response to Mycobacterium tuberculosis and L. pneumophila. CONCLUSIONS: Our study presents high-throughput characterization of D. discoideum transcriptional response to intracellular pathogens using RNA-seq. We demonstrate that the transcriptional response is in essence distinct to each pathogen and that in many cases, the corresponding regulation is recapitulated in human macrophages after infection by mycobacteria and L. pneumophila. This indicates that host-pathogen interactions are evolutionary conserved, derived from the early interactions between free-living phagocytic cells and bacteria. Taken together, our results strengthen the use of D. discoideum as a general infection model.


Assuntos
Infecções Bacterianas/microbiologia , Dictyostelium/microbiologia , Modelos Biológicos , Proteínas de Protozoários/genética , Células Cultivadas , Citoplasma/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Legionella pneumophila/fisiologia , Macrófagos/microbiologia , Mycobacterium marinum/fisiologia , Proteínas de Protozoários/metabolismo , Especificidade da Espécie , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...