Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Virol ; 95(13): e0220320, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853965

RESUMO

Recent field trials have demonstrated that dengue incidence can be substantially reduced by introgressing strains of the endosymbiotic bacterium Wolbachia into Aedes aegypti mosquito populations. This strategy relies on Wolbachia reducing the susceptibility of Ae. aegypti to disseminated infection by positive-sense RNA viruses like dengue. However, RNA viruses are well known to adapt to antiviral pressures. Here, we review the viral infection stages where selection for Wolbachia-resistant virus variants could occur. We also consider the genetic constraints imposed on viruses that alternate between vertebrate and invertebrate hosts, and the likely selection pressures to which dengue virus might adapt in order to be effectively transmitted by Ae. aegypti that carry Wolbachia. While there are hurdles to dengue viruses developing resistance to Wolbachia, we suggest that long-term surveillance for resistant viruses should be an integral component of Wolbachia-introgression biocontrol programs.


Assuntos
Adaptação Fisiológica/fisiologia , Aedes/microbiologia , Vírus da Dengue/crescimento & desenvolvimento , Dengue/prevenção & controle , Wolbachia/metabolismo , Aedes/efeitos dos fármacos , Animais , Dengue/patologia , Dengue/transmissão , Drosophila/microbiologia , Evolução Molecular , Humanos , Resistência a Inseticidas/fisiologia , Mosquitos Vetores/microbiologia , Seleção Genética/genética
3.
PLoS One ; 15(3): e0223629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32196505

RESUMO

Bats are well known reservoir hosts for RNA and DNA viruses. The use of captive bats in research has intensified over the past decade as researchers aim to examine the virus-reservoir host interface. In this study, we investigated the effects of captivity on the fecal bacterial microbiome of an insectivorous microbat, Mops condylurus, a species that roosts in close proximity to humans and has likely transmitted viral infections to humans. Using amplicon 16S rRNA gene sequencing, we characterized changes in fecal bacterial community composition for individual bats directly at the time of capture and again after six weeks in captivity. We found that microbial community richness by measure of the number of observed operational taxonomic units (OTUs) in bat feces increases in captivity. Importantly, we found the similarity of microbial community structures of fecal microbiomes between different bats to converge during captivity. We propose a six week-acclimatization period prior to carrying out infection studies or other research influenced by the microbiome composition, which may be advantageous to reduce variation in microbiome composition and minimize biological variation inherent to in vivo experimental studies.


Assuntos
Quirópteros/microbiologia , Eulipotyphla/microbiologia , Microbioma Gastrointestinal/genética , Animais , DNA Bacteriano/genética , Fezes/microbiologia , Firmicutes/genética , Insetos/microbiologia , Filogenia , Proteobactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
4.
Front Immunol ; 10: 2414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681302

RESUMO

Ebola virus infection of human dendritic cells (DCs) induces atypical adaptive immune responses and thereby exacerbates Ebola virus disease (EVD). Human DCs, infected with Ebola virus aberrantly express low levels of the DC activation markers CD80, CD86, and MHC class II. The T cell responses ensuing are commonly anergic rather than protective against EVD. We hypothesize that DCs derived from potential reservoir hosts such as bats, which do not develop disease signs in response to Ebola virus infection, would exhibit features associated with activation. In this study, we have examined Zaire ebolavirus (EBOV) infection of DCs derived from the Angolan free-tailed bat species, Mops condylurus. This species was previously identified as permissive to EBOV infection in vivo, in the absence of disease signs. M. condylurus has also been recently implicated as the reservoir host for Bombali ebolavirus, a virus species that is closely related to EBOV. Due to the absence of pre-existing M. condylurus species-specific reagents, we characterized its de novo assembled transcriptome and defined its phylogenetic similarity to other mammals, which enabled the identification of cross-reactive reagents for M. condylurus bone marrow-derived DC (bat-BMDC) differentiation and immune cell phenotyping. Our results reveal that bat-BMDCs are susceptible to EBOV infection as determined by detection of EBOV specific viral RNA (vRNA). vRNA increased significantly 72 h after EBOV-infection and was detected in both cells and in culture supernatants. Bat-BMDC infection was further confirmed by the observation of GFP expression in DC cultures infected with a recombinant GFP-EBOV. Bat-BMDCs upregulated CD80 and chemokine ligand 3 (CCL3) transcripts in response to EBOV infection, which positively correlated with the expression levels of EBOV vRNA. In contrast to the aberrant responses to EBOV infection that are typical for human-DC, our findings from bat-BMDCs provide evidence for an immunological basis of asymptomatic EBOV infection outcomes.


Assuntos
Quirópteros/imunologia , Quirópteros/virologia , Células Dendríticas/imunologia , Reservatórios de Doenças , Ebolavirus , Filoviridae , Animais , Biomarcadores , Quirópteros/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Imunofenotipagem , Baço/imunologia , Baço/metabolismo , Transcriptoma
5.
BMC Vet Res ; 13(1): 396, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273042

RESUMO

BACKGROUND: Bat-borne virus surveillance is necessary for determining inter-species transmission risks and is important due to the wide-range of bat species which may harbour potential pathogens. This study aimed to monitor coronaviruses (CoVs) and paramyxoviruses (PMVs) in bats roosting in northwest Italian regions. Our investigation was focused on CoVs and PMVs due to their proven ability to switch host and their zoonotic potential. Here we provide the phylogenetic characterization of the highly conserved polymerase gene fragments. RESULTS: Family-wide PCR screenings were used to test 302 bats belonging to 19 different bat species. Thirty-eight animals from 12 locations were confirmed as PCR positive, with an overall detection rate of 12.6% [95% CI: 9.3-16.8]. CoV RNA was found in 36 bats belonging to eight species, while PMV RNA in three Pipistrellus spp. Phylogenetic characterization have been obtained for 15 alpha- CoVs, 5 beta-CoVs and three PMVs; moreover one P. pipistrellus resulted co-infected with both CoV and PMV. A divergent alpha-CoV clade from Myotis nattereri SpA is also described. The compact cluster of beta-CoVs from R. ferrumequinum roosts expands the current viral sequence database, specifically for this species in Europe. To our knowledge this is the first report of CoVs in Plecotus auritus and M. oxygnathus, and of PMVs in P. kuhlii. CONCLUSIONS: This study identified alpha and beta-CoVs in new bat species and in previously unsurveyed Italian regions. To our knowledge this represents the first and unique report of PMVs in Italy. The 23 new bat genetic sequences presented will expand the current molecular bat-borne virus databases. Considering the amount of novel bat-borne PMVs associated with the emergence of zoonotic infections in animals and humans in the last years, the definition of viral diversity within European bat species is needed. Performing surveillance studies within a specific geographic area can provide awareness of viral burden where bats roost in close proximity to spillover hosts, and form the basis for the appropriate control measures against potential threats for public health and optimal management of bats and their habitats.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Coronavirus , Infecções por Paramyxoviridae/veterinária , Paramyxoviridae , Animais , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Feminino , Itália/epidemiologia , Masculino , Paramyxoviridae/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Zoonoses/epidemiologia , Zoonoses/virologia
6.
J Virol ; 90(4): 1888-97, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656692

RESUMO

UNLABELLED: Although avian H5N1 influenza virus has yet to develop the capacity for human-to-human spread, the severity of the rare cases of human infection has warranted intensive follow-up of potentially exposed individuals that may require antiviral prophylaxis. For countries where antiviral drugs are limited, the World Health Organization (WHO) has developed a risk categorization for different levels of exposure to environmental, poultry, or human sources of infection. While these take into account the infection source, they do not account for the likely mode of virus entry that the individual may have experienced from that source and how this could affect the disease outcome. Knowledge of the kinetics and spread of virus after natural routes of exposure may further inform the risk of infection, as well as the likely disease severity. Using the ferret model of H5N1 infection, we compared the commonly used but artificial inoculation method that saturates the total respiratory tract (TRT) with virus to upper respiratory tract (URT) and oral routes of delivery, those likely to be encountered by humans in nature. We show that there was no statistically significant difference in survival rate with the different routes of infection, but the disease characteristics were somewhat different. Following URT infection, viral spread to systemic organs was comparatively delayed and more focal than after TRT infection. By both routes, severe disease was associated with early viremia and central nervous system infection. After oral exposure to the virus, mild infections were common suggesting consumption of virus-contaminated liquids may be associated with seroconversion in the absence of severe disease. IMPORTANCE: Risks for human H5N1 infection include direct contact with infected birds and frequenting contaminated environments. We used H5N1 ferret infection models to show that breathing in the virus was more likely to produce clinical infection than swallowing contaminated liquid. We also showed that virus could spread from the respiratory tract to the brain, which was associated with end-stage disease, and very early viremia provided a marker for this. With upper respiratory tract exposure, infection of the brain was common but hard to detect, suggesting that human neurological infections might be typically undetected at autopsy. However, viral spread to systemic sites was slower after exposure to virus by this route than when virus was additionally delivered to the lungs, providing a better therapeutic window. In addition to exposure history, early parameters of infection, such as viremia, could help prioritize antiviral treatments for patients most at risk of succumbing to infection.


Assuntos
Modelos Animais de Doenças , Transmissão de Doença Infecciosa , Virus da Influenza A Subtipo H5N1/fisiologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Animais , Feminino , Furões , Masculino , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/transmissão , Medição de Risco , Análise de Sobrevida
7.
mBio ; 6(6): e01024-15, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26507227

RESUMO

UNLABELLED: The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. IMPORTANCE: The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Lipopeptídeos/imunologia , Imunidade Adaptativa , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Proteção Cruzada , Feminino , Humanos , Imunoglobulina A/análise , Memória Imunológica/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Influenza Humana/transmissão , Influenza Humana/virologia , Lipopeptídeos/administração & dosagem , Lipopeptídeos/agonistas , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
8.
PLoS One ; 8(3): e59623, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23544079

RESUMO

Members of the pentraxin family, including PTX3 and serum amyloid P component (SAP), have been reported to play a role in innate host defence against a range of microbial pathogens, yet little is known regarding their antiviral activities. In this study, we demonstrate that human SAP binds to human influenza A virus (IAV) strains and mediates a range of antiviral activities, including inhibition of IAV-induced hemagglutination (HA), neutralization of virus infectivity and inhibition of the enzymatic activity of the viral neuraminidase (NA). Characterization of the anti-IAV activity of SAP after periodate or bacterial sialidase treatment demonstrated that α(2,6)-linked sialic acid residues on the glycosidic moiety of SAP are critical for recognition by the HA of susceptible IAV strains. Other proteins of the innate immune system, namely human surfactant protein A and porcine surfactant protein D, have been reported to express sialylated glycans which facilitate inhibition of particular IAV strains, yet the specific viral determinants for recognition of these inhibitors have not been defined. Herein, we have selected virus mutants in the presence of human SAP and identified specific residues in the receptor-binding pocket of the viral HA which are critical for recognition and therefore susceptibility to the antiviral activities of SAP. Given the widespread expression of α(2,6)-linked sialic acid in the human respiratory tract, we propose that SAP may act as an effective receptor mimic to limit IAV infection of airway epithelial cells.


Assuntos
Antivirais/metabolismo , Vírus da Influenza A/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Componente Amiloide P Sérico/metabolismo , Animais , Antivirais/farmacologia , Proteína C-Reativa/metabolismo , Cálcio/farmacologia , Complemento C1q/metabolismo , Cães , Testes de Inibição da Hemaglutinação , Humanos , Hidrólise/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Lectina de Ligação a Manose/metabolismo , Mutação/genética , Neuraminidase/metabolismo , Testes de Neutralização , Ligação Proteica/efeitos dos fármacos , Proteína D Associada a Surfactante Pulmonar/metabolismo , Receptores Virais/metabolismo , Especificidade da Espécie
9.
Infect Immun ; 81(3): 645-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23319557

RESUMO

Influenza A virus (IAV) predisposes individuals to secondary infections with the bacterium Streptococcus pneumoniae (the pneumococcus). Infections may manifest as pneumonia, sepsis, meningitis, or otitis media (OM). It remains controversial as to whether secondary pneumococcal disease is due to the induction of an aberrant immune response or IAV-induced immunosuppression. Moreover, as the majority of studies have been performed in the context of pneumococcal pneumonia, it remains unclear how far these findings can be extrapolated to other pneumococcal disease phenotypes such as OM. Here, we used an infant mouse model, human middle ear epithelial cells, and a series of reverse-engineered influenza viruses to investigate how IAV promotes bacterial OM. Our data suggest that the influenza virus HA facilitates disease by inducing a proinflammatory response in the middle ear cavity in a replication-dependent manner. Importantly, our findings suggest that it is the inflammatory response to IAV infection that mediates pneumococcal replication. This study thus provides the first evidence that inflammation drives pneumococcal replication in the middle ear cavity, which may have important implications for the treatment of pneumococcal OM.


Assuntos
Inflamação/patologia , Infecções por Orthomyxoviridae/complicações , Otite Média/patologia , Infecções Pneumocócicas/patologia , Animais , Vírus da Influenza A/classificação , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/virologia , Otite Média/imunologia , Otite Média/microbiologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Carga Viral
10.
J Virol ; 86(23): 12544-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22951824

RESUMO

Influenza A virus transmission by direct contact is not well characterized. Here, we describe a mouse model for investigation of factors regulating contact-dependent transmission. Strains within the H3N2 but not H1N1 subtype of influenza virus were transmissible, and reverse-engineered viruses representing hybrids of these subtypes showed that the viral hemagglutinin is a determinant of the transmissible phenotype. Transmission to contact mice occurred within the first 6 to 54 h after cohousing with directly infected index mice, and the proportion of contacts infected within this period was reduced if the index mice had been preinfected with a heterologous subtype virus. A threshold level of virus present in the saliva of the index mice was identified, above which the likelihood of transmission was greatly increased. There was no correlation with transmission and viral loads in the nose or lung. This model could be useful for preclinical evaluation of antiviral and vaccine efficacy in combating contact-dependent transmission of influenza.


Assuntos
Modelos Animais de Doenças , Hemaglutininas Virais/metabolismo , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae/transmissão , Análise de Variância , Animais , Cães , Hemaglutininas Virais/genética , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/sangue , Saliva/virologia , Especificidade da Espécie , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...