Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499994

RESUMO

Developing a biofilm biomarker detector and inhibitor will immensely benefit efforts geared at curbing infectious diseases and microbiologically induced corrosion of medical implants, marine vessels and buried steel pipelines. N-Acyl homoserine lactones (AHLs) are important biomarkers gram-negative bacteria use for communication. In this work, we investigated the interactions between three AHL molecules and graphene oxide (GO) and ZnO nanomaterials embedded in conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) film. The results show that PEDOT/GO/ZnO detected AHLs to a considerable extent with adsorption enthalpies of -4.02, -4.87 and -4.97 KJ/mol, respectively, for N-(2-oxotetrahydrofuran-3-yl)heptanamide (AHL1), 2-hydroxy-N-(2-oxotetrahydrofuran-3-yl)nonanamide (AHL2) and (E)-3-(3-hydroxyphenyl)-N-(2-oxotetrahydrofuran-3-yl)acrylamide (AHL3) molecules. The ZnO nanoparticles facilitated charge redistribution and transfer, thereby enhancing the conductivity and overall sensitivity of the substrate toward the AHLs. The adsorption distance and sites of interactions further tuned the charge migration and signal generation by the substrate, thus affirming the suitability of the modeled thin film as a sensor material. Excellent stability and conductivity were maintained before and after the adsorption of each AHL molecule. Moreover, the desorption time for each AHL molecule was calculated, and the result affirmed that the modeled film materials are promising for developing highly sensitive biosensors.Communicated by Ramaswamy H. Sarma.

2.
ACS Omega ; 8(15): 13551-13568, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091381

RESUMO

The utilization of nanostructured materials for several biomedical applications has tremendously increased over the last few decades owing to their nanosizes, porosity, large surface area, sensitivity, and efficiency as drug delivery systems. Thus, the incorporation of functionalized and pristine nanostructures for cancer therapy offers substantial prospects to curb the persistent problems of ineffective drug administration and delivery to target sites. The potential of pristine (Ca12O12) and formyl (-CHO)- and amino (-NH2)-functionalized (Ca12O12-CHO and Ca12O12-NH2) derivatives as efficient nanocarriers for 5-fluorouracil (5FU) was studied at the B3LYP-GD3(BJ)/6-311++G(d,p) theoretical level in two electronic media (gas and solvent). To effectively account for all adsorption interactions of the drug on the investigated surfaces, electronic studies as well as topological analysis based on the quantum theory of atoms in molecules (QTAIM) and noncovalent interactions were exhaustively utilized. Interestingly, the obtained results divulged that the 5FU drug interacted favorably with both Ca12O12 and its functionalized derivatives. The adsorption energies of pristine and functionalized nanostructures were calculated to be -133.4, -96.9, and -175.6 kcal/mol, respectively, for Ca12O12, Ca12O12-CHO, and Ca12O12-NH2. Also, both topological analysis and NBO stabilization analysis revealed the presence of interactions among O3-H32, O27-C24, O10-C27, and N24-H32 atoms of the drug and the surface. However, 5FU@Ca12O12-CHO molecules portrayed the least adsorption energy due to considerable destabilization of the molecular complex as revealed by the computed deformation energy. Therefore, 5FU@Ca12O12 and 5FU@Ca12O12-NH2 acted as better nanovehicles for 5FU.

3.
Heliyon ; 9(1): e12599, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36691540

RESUMO

Toxicity in drug includes target toxicity, immune hypersensitivity and off target toxicity. Recently, advances in nanotechnology in the areas of drug delivery have help reduce toxicity and enhance drug solubility and deliver drugs to target sites more efficiently. In this study, we present a novel heteroatom functionalized quantum dot (QD-NBC and QD-NBS) as an effective drug delivery system for isoniazid. The said QD has been computationally modeled to assess its effectiveness in delivering isoniazid to desired target. Density functional theory (DFT) calculations were performed on the QD at the B3LYP/6-311+G(d, p) level to assess its stability through the natural bond orbital (NBO) calculations, and frontier molecular orbital (FMO) before and after interaction with isoniazid drug to understand any change in molecular behavior of the surface. Appropriate intermolecular interactions between the QD and the drug were computed through the Quantum theory of atoms in molecules (QTAIM) and Non-covalent interaction to assess the various binding mechanism and possible interactions resulting to the effective delivery of the drug target. To understand and accurately appraise the binding energy of adsorption, DFT calculations were performed with different functionals (B3LYP, CAM-B3LYP, PBEPBE, GD3BJ & WB97XD/6-311+G (d, p)). The results from DFT calculations point the functionalized QDs to be stable with appreciable energy gap suitable for delivery purposes. The adsorption energy of the drug target with the QD is in the range of -24.73 to 33.75 kcal/mol which indicates substantial interaction of the drug with the QD surface. This absorption energy is comparable with several reported literature and thus prompt the suitability of the surface for isoniazid delivery.

4.
ACS Appl Bio Mater ; 5(12): 5887-5900, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36413624

RESUMO

Nanostructures such as nanosheets, nanotubes, nanocages, and fullerenes have been extensively studied as potential candidates in various fields since the advancement of nanoscience. Herein, the interaction between biguanides (BGN) and metformin (MET) on the modified covalent organic framework (COF), COF-B, and COF-Al was investigated using density functional theory at the ωB97XD/6-311+G (d, p) level of computation to explore a new drug delivery system. The electronic properties evaluation reveals that the studied surfaces are suited for the delivery of both drug molecules. The calculated adsorption energies and basis set superposition errors (BSSE) ranged between -21.20 and -65.86 kJ/mol. The negative values obtained are an indication of excellent interaction between the drug molecules and the COF surfaces. Moreover, BGN is better adsorbed on COF-B with Eads of -65.86 kJ/mol, while MET is better adsorbed on COF-Al with Eads = -47.30 kJ/mol. The analysis of the quantum theory of atom in molecules (QTAIM) explained the nature and strength of intermolecular interaction existing between the drug molecules BGN and MET with the adsorbing surfaces. The analysis of noncovalent interaction (NCI) shows a weak hydrogen-bond interaction. Other properties such as quantum chemical descriptors and natural bond orbital (NBO) analysis also agree with the potential of COF surfaces as drug delivery systems. The electron localization function (ELF) is discussed, and it confirms the transitions occurring in the NBO analysis of the complexes. In conclusion, COF-B and COF-Al are suitable candidates for the effective delivery of BGN and MET.


Assuntos
Estruturas Metalorgânicas , Metformina , Estruturas Metalorgânicas/química , Preparações Farmacêuticas , Porosidade , Ligação de Hidrogênio
5.
ACS Omega ; 7(39): 34929-34943, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211081

RESUMO

In recent times, nanomaterials have been applied for the detection and sensing of toxic gases in the environment owing to their large surface-to-volume ratio and efficiency. CO2 is a toxic gas that is associated with causing global warming, while SO2 and NO2 are also characterized as nonbenign gases in the sense that when inhaled, they increase the rate of respiratory infections. Therefore, there is an explicit reason to develop efficient nanosensors for monitoring and sensing of these gases in the environment. Herein, we performed quantum chemical simulation on a Ca12O12 nanocage as an efficient nanosensor for sensing and monitoring of these gases (CO2, SO2, NO2) by employing high-level density functional theory modeling at the B3LYP-GD3(BJ)/6-311+G(d,p) level of theory. The results obtained from our studies revealed that the adsorption of CO2 and SO2 on the Ca12O12 nanocage with adsorption energies of -2.01 and -5.85 eV, respectively, is chemisorption in nature, while that of NO2 possessing an adsorption energy of -0.69 eV is related to physisorption. Moreover, frontier molecular orbital (FMO), global reactivity descriptors, and noncovalent interaction (NCI) analysis revealed that the adsorption of CO2 and SO2 on the Ca12O12 nanocage is stable adsorption, while that of NO2 is unstable adsorption. Thus, we can infer that the Ca12O12 nanocage is more efficient as a nanosensor in sensing CO2 and SO2 gases than in sensing NO2 gas.

6.
Appl Biochem Biotechnol ; 194(12): 5680-5701, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35802239

RESUMO

The problems associated with antibacterial drug discovery have kept the model of antibacterial drug to an extraordinary low level. Humans carry millions of bacteria; some species of bacteria can cause infectious disease, while some are pathogenic. Infectious bacteria which can reproduce quickly in the body can cause diseases such as tuberculosis, cholera, pneumonia, and typhoid, thus arises an urgent need to develop new drugs. Herein, 2-{[(2-hydroxyphenyl)methylidene]amino}nicotinic acid was synthesized from the condensation of o-phenylenediamine and 5-nitrosalicaldehyde followed by detailed characterization by ultraviolet-visible spectroscopy, vibrational studies FT-IR, nuclear magnetic resonance (1H-NMR, 13C-NMR), and gas chromatography coupled with mass spectroscopy (GC-MS). The complex synthesized was screened against selected microbes in order to establish their potential antimicrobial activity using selected known drugs as reference. From the results obtained, the Schiff base exhibited antimicrobial activity against all the tested microorganisms except Candida albicans isolate, which exhibited zero diameter zone of inhibition. The theoretical investigations of the synthesized compounds were computed using density functional theory (DFT) at the B3LYP/6-311 + + G(d, p) level of theory and in silico molecular docking simulation. By comparing binding affinity of the studied compound and the standard drug (ampicillin), the studied compound docked against bacterial protein showed a high binding affinity for E. coli 6.6 kcal/mol and makes it effective as an antibacterial agent for E. coli.


Assuntos
Niacina , Humanos , Simulação de Acoplamento Molecular , Niacina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...