Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203675

RESUMO

In the retina, retinoids involved in vision are under constant threat of oxidation, and their oxidation products exhibit deleterious properties. Using pulse radiolysis, this study determined that the bimolecular rate constants of scavenging cation radicals of retinoids by taurine are smaller than 2 × 107 M-1s-1 whereas lutein scavenges cation radicals of all three retinoids with the bimolecular rate constants approach the diffusion-controlled limits, while zeaxanthin is only 1.4-1.6-fold less effective. Despite that lutein exhibits greater scavenging rate constants of retinoid cation radicals than other antioxidants, the greater concentrations of ascorbate in the retina suggest that ascorbate may be the main protectant of all visual cycle retinoids from oxidative degradation, while α-tocopherol may play a substantial role in the protection of retinaldehyde but is relatively inefficient in the protection of retinol or retinyl palmitate. While the protection of retinoids by lutein and zeaxanthin appears inefficient in the retinal periphery, it can be quite substantial in the macula. Although the determined rate constants of scavenging the cation radicals of retinol and retinaldehyde by dopa-melanin are relatively small, the high concentration of melanin in the RPE melanosomes suggests they can be scavenged if they are in proximity to melanin-containing pigment granules.


Assuntos
Retinoides , Vitamina A , Melaninas , Retinaldeído , Luteína , Zeaxantinas , Taurina , Cátions
2.
Photochem Photobiol Sci ; 20(1): 183-188, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33721239

RESUMO

A hypothesis is proposed to explain the increased detrimental effect of COVID-19 for Black, Asian and Minority Ethnic (BAME) men and women compared to Caucasian individuals. This is based on the differing photochemistry of phaeomelanin in fair skin and eumelanin in dark/black skin. It is suggested that a range of reactive oxygen species, including, singlet oxygen and the superoxide radical anion, derived via direct photolysis of phaeomelanin, may escape the melanocyte and cause subsequent damage to the SARS-CoV-2 virus. It is further suggested that (large) carbon and sulphur peroxy radicals, from oxygen addition to radicals formed by carbon-sulphur bond cleavage, may assist via damage to the cell membranes. It is also speculated that light absorption by phaeomelanin and the subsequent C-S bond cleavage, leads to release of pre-absorbed reactive oxygen species, such as singlet oxygen and free radicals, which may also contribute to an enhanced protective effect for fair-skinned people.


Assuntos
COVID-19/patologia , Etnicidade , Processos Fotoquímicos , COVID-19/etnologia , COVID-19/virologia , Carbono/química , Feminino , Radicais Livres/química , Humanos , Luz , Masculino , Melaninas/química , Fotólise , SARS-CoV-2/isolamento & purificação , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Pele/metabolismo , Enxofre/química , Superóxidos/química , Superóxidos/metabolismo
3.
Photochem Photobiol Sci ; 19(8): 1001-1009, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589182

RESUMO

The interactions of dietary carotenoids, and particularly the xanthophylls in the macula, with singlet oxygen and three different oxy-radicals, (hydroxyl radical, nitrogen dioxide and the superoxide radical anion) are compared using pulsed laser and γ-techniques. The results give possible molecular mechanisms for the switch from anti-oxidant (protection) by carotenoids to pro-oxidant (damage) by carotenoids. The participation of oxygen in radical mechanisms in the presence of different carotenoids is compared for the different radicals. It is shown that the mechanistic role of oxygen differs very significantly for anti-/pro-oxidation by hydroxyl radicals when compared to nitrogen dioxide. Lutein was found to be an extremely good cell protector against hydroxyl radicals at all oxygen concentrations, including under physiological conditions.


Assuntos
Antioxidantes/farmacologia , Carotenoides/farmacologia , Oxigênio Singlete/farmacologia , Antioxidantes/química , Carotenoides/química , Radicais Livres/química , Radicais Livres/farmacologia , Raios gama , Lasers , Linfócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxigênio Singlete/química
4.
Angew Chem Int Ed Engl ; 59(33): 13936-13940, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32352195

RESUMO

Redox active metalloenzymes catalyse a range of biochemical processes essential for life. However, due to their complex reaction mechanisms, and often, their poor optical signals, detailed mechanistic understandings of them are limited. Here, we develop a cryoreduction approach coupled to electron paramagnetic resonance measurements to study electron transfer between the copper centers in the copper nitrite reductase (CuNiR) family of enzymes. Unlike alternative methods used to study electron transfer reactions, the cryoreduction approach presented here allows observation of the redox state of both metal centers, a direct read-out of electron transfer, determines the presence of the substrate/product in the active site and shows the importance of protein motion in inter-copper electron transfer catalyzed by CuNiRs. Cryoreduction-EPR is broadly applicable for the study of electron transfer in other redox enzymes and paves the way to explore transient states in multiple redox-center containing proteins (homo and hetero metal ions).


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Nitrito Redutases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Oxirredução , Temperatura
5.
Antioxidants (Basel) ; 9(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210038

RESUMO

Carotenoid pigments, particularly ß-carotene and lycopene, are consumed in human foodstuffs and play a vital role in maintaining health. ß-carotene is known to quench singlet oxygen and can have strong antioxidant activity. As such, it was proposed that ß-carotene might reduce the risk of cancer. Epidemiological studies found inverse relationships between cancer risk and ß-carotene intake or blood levels. However, clinical trials failed to support those findings and ß-carotene supplementation actually increased lung cancer incidence in male smokers. Early experimental animal studies found dietary ß-carotene inhibited UV-induced skin cancers. Later studies found that ß-carotene supplementation exacerbated UV-carcinogenic expression. The discrepancies of these results were related to the type of diet the animals consumed. Lycopene has been associated with reduced risk of lethal stage prostate cancer. Other carotenoids, e.g., lutein and zeaxanthin, play a vital role in visual health. Numerous studies of molecular mechanisms to explain the carotenoids' mode of action have centered on singlet oxygen, as well as radical reactions. In cellular systems, singlet oxygen quenching by carotenoids has been reported but is more complex than in organic solvents. In dietary ß-carotene supplement studies, damaging pro-oxidant reactivity can also arise. Reasons for this switch are likely due to the properties of the carotenoid radicals themselves. Understanding singlet oxygen reactions and the anti-/pro-oxidant roles of carotenoids are of importance to photosynthesis, vision and cancer.

6.
Int J Mol Sci ; 20(11)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181693

RESUMO

Retinoids are present in human tissues exposed to light and under increased risk of oxidative stress, such as the retina and skin. Retinoid cation radicals can be formed as a result of the interaction between retinoids and other radicals or photoexcitation with light. It has been shown that such semi-oxidized retinoids can oxidize certain amino acids and proteins, and that α-tocopherol can scavenge the cation radicals of retinol and retinoic acid. The aim of this study was to determine (i) whether ß-, γ-, and δ-tocopherols can also scavenge these radicals, and (ii) whether tocopherols can scavenge the cation radicals of another form of vitamin A-retinal. The retinoid cation radicals were generated by the pulse radiolysis of benzene or aqueous solution in the presence of a selected retinoid under oxidizing conditions, and the kinetics of retinoid cation radical decays were measured in the absence and presence of different tocopherols, Trolox or urate. The bimolecular rate constants are the highest for the scavenging of cation radicals of retinal, (7 to 8) × 109 M-1·s-1, followed by retinoic acid, (0.03 to 5.6) × 109 M-1·s-1, and retinol, (0.08 to 1.6) × 108 M-1·s-1. Delta-tocopherol is the least effective scavenger of semi-oxidized retinol and retinoic acid. The hydrophilic analogue of α-tocopherol, Trolox, is substantially less efficient at scavenging retinoid cation radicals than α-tocopherol and urate, but it is more efficient at scavenging the cation radicals of retinoic acid and retinol than δ-tocopherol. The scavenging rate constants indicate that tocopherols can effectively compete with amino acids and proteins for retinoid cation radicals, thereby protecting these important biomolecules from oxidation. Our results provide another mechanism by which tocopherols can diminish the oxidative damage to the skin and retina and thereby protect from skin photosensitivity and the development and/or progression of changes in blinding retinal diseases such as Stargardt's disease and age-related macular degeneration (AMD).


Assuntos
Cromanos/química , Sequestradores de Radicais Livres/química , Retinoides/química , Tocoferóis/química , Ácido Úrico/química , Cátions/química
7.
Antioxidants (Basel) ; 7(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29301252

RESUMO

We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration.

9.
FEBS Lett ; 590(8): 1086-93, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991327

RESUMO

Reducing radiation damage is important and dietary antioxidants that can protect cells from such damage are of value. Dietary lycopene, a carotenoid found in tomatoes, protects human lymphoid cell membranes from damage by γ-radiation. We report that such protective effects are remarkably reduced as the oxygen concentration increases - near zero at 100% oxygen from fivefold protection at 20% oxygen and, dramatically, from 50-fold protection at 0% oxygen. Such huge differences imply that under higher oxygen concentrations lycopene could lead to improved cancer therapy using γ-radiation. The cells are not efficiently protected from the superoxide radical by lycopene. Noncellular studies suggest molecular mechanisms for the oxygen effect.


Assuntos
Carotenoides/farmacologia , Citoproteção/efeitos dos fármacos , Citoproteção/efeitos da radiação , Raios gama , Oxigênio/farmacologia , Ácido Ascórbico/farmacologia , Carotenoides/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Radical Hidroxila/metabolismo , Licopeno , Análise Espectral , Superóxidos/metabolismo , Vitamina A/análogos & derivados , Vitamina E/farmacologia
10.
Free Radic Biol Med ; 67: 417-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24316197

RESUMO

The mechanism responsible for the remarkable photomutagenicity of fluoroquinolone (FQ) antibiotics remains unknown. For this reason, it was considered worthwhile to study in detail the interactions between DNA and a dihalogenated FQ such as lomefloxacin (LFX; one of the most photomutagenic FQs) and its N-acetyl derivative ALFX. Studies of photosensitized DNA damage by (A)LFX, such as formation of DNA single-strand breaks (SSBs), together with pulse radiolysis, laser flash photolysis, and absorption and fluorescence measurements, have shown the important effects of the cationic character of the piperazinyl ring on the affinity of this type of drug for DNA. Hence, the formation of SSBs was detected for LFX, whereas ALFX and ciprofloxacin (a monofluorated FQ) needed a considerably larger dose of light to produce some damage. In this context, it was determined that the association constant (Ka) for the binding of LFX to DNA is ca. 2×10(3)M(-1), whereas in the case of ALFX it is only ca. 0.5×10(3)M(-1). This important difference is attributed to an association between the cationic peripheral ring of LFX and the phosphate moieties of DNA and justifies the DNA SSB results. The analysis of the transient species detected and the photomixtures has allowed us to establish the intermolecular processes involved in the photolysis of FQ in the presence of DNA and 2'-deoxyguanosine (dGuo). Interestingly, although a covalent binding of the dihalogenated FQ to dGuo occurs, the photodegradation of FQ…DNA complexes did not reveal any significant covalent attachment. Another remarkable outcome of this study was that (A)LFX radical anions, intermediates required for the onset of DNA damage, were detected by pulse radiolysis but not by laser flash photolysis.


Assuntos
Ciprofloxacina/química , DNA/química , Fluoroquinolonas/química , Mutagênicos/química , Acetilação , Animais , Bovinos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos da radiação , Desoxiguanosina/química , Cinética , Lasers de Estado Sólido , Fotólise , Radiólise de Impulso , Soluções , Relação Estrutura-Atividade
11.
Free Radic Biol Med ; 65: 280-290, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23811111

RESUMO

Hypochlorous acid and its conjugate base, hypochlorite ions, produced under inflammatory conditions, may produce chloramides of glycosaminoglycans, these being significant components of the extracellular matrix (ECM). This may occur through the binding of myeloperoxidase directly to the glycosaminoglycans. The N-Cl group in the chloramides is a potential selective target for both reducing and oxidizing radicals, leading possibly to more efficient and damaging fragmentation of these biopolymers relative to the parent glycosaminoglycans. To investigate the effect of the N-Cl group, we used ionizing radiation to produce quantifiable concentrations of the reducing radicals, hydrated electron and superoxide radical, and also of the oxidizing radicals, hydroxyl, carbonate, and nitrogen dioxide, all of which were reacted with hyaluronan and heparin and their chloramides in this study. PAGE gels calibrated for molecular weight allowed the consequent fragmentation efficiencies of these radicals to be calculated. Hydrated electrons were shown to produce fragmentation efficiencies of 100 and 25% for hyaluronan chloramide (HACl) and heparin chloramide (HepCl), respectively. The role of the sulfate group in heparin in the reduction of fragmentation can be rationalized using mechanisms proposed by M.D. Rees et al. (J. Am. Chem. Soc.125:13719-13733; 2003), in which the initial formation of an amidyl radical leads rapidly to a C-2 radical on the glucosamine moiety. This is 100% efficient at causing glycosidic bond breakage in HACl but only 25% efficient in HepCl, the role of the sulfate group being to favor the nonfragmentary routes for the C-2 radical. The weaker reducing agent, the superoxide radical, did not cause fragmentation of either HACl or HepCl although kinetic reactivity had been demonstrated in earlier studies. Experiments using the oxidizing radicals, hydroxyl and carbonate, both potential in vivo species, showed significant increases in fragmentation efficiencies for both HACl and HepCl, relative to the parent molecules. The carbonate radical was shown to be involved in site-specific reactions at the N-Cl groups, reacting via abstraction of Cl, to produce the same amidyl radical produced by one-electron reductants such as the hydrated electron. As for the hydrated electrons, the data support fragmentation efficiencies of 100 and 29% for reaction of carbonate radicals at N-Cl for HACl and HepCl, respectively. For the weaker oxidant, nitrogen dioxide, no fragmentation was observed, probably because of a low kinetic reactivity and low reduction potential. It seems likely therefore that the N-Cl group can direct damage to extracellular matrix glycosaminoglycan chloramides, which may be produced under inflammatory conditions. The in vivo species, the carbonate radical, is also much more likely to be site-specific in its reactions with such components of the ECM than the hydroxyl radical.


Assuntos
Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Ácido Hialurônico/metabolismo , Inflamação/metabolismo , Animais , Matriz Extracelular/química , Radicais Livres/metabolismo , Radicais Livres/toxicidade , Glicosaminoglicanos/química , Heparina/química , Humanos , Ácido Hialurônico/química , Oxirredução , Estresse Oxidativo/fisiologia
12.
Phys Chem Chem Phys ; 15(26): 10930-41, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23703288

RESUMO

Copper porphyrin dissolved in CH2Cl2:toluene as fluid and frozen solution was studied as a function of temperature using X-band electron paramagnetic resonance (EPR). Quantitative interpretation was obtained using a recently developed Stochastic Liouville simulation method. For the first time we address the large spin system that translates into a 400,000 dimensional Liouville equation solved under slow-motion conditions. Using a simple three parameter microscopic model, the temperature dependence of porphyrin rotational correlation time is determined to be in the range 1-10 ns and a fast local motion is in the subpico-second regime with an amplitude increasing with temperature. The methodology provides an important tool for arriving at an accurate set of spin Hamiltonian parameters since determining a unique set of parameters from a frozen solution EPR experiment is often difficult. Thus, the proposed method discriminates between parameters proposed from frozen solution EPR experiments or quantum chemistry calculations. The methodology presented is expected to be valuable in obtaining a molecular dynamics picture of metal proteins using EPR as well as in the study of artificial photosynthetic systems.


Assuntos
Cobre/química , Simulação de Dinâmica Molecular , Porfirinas/química , Complexos de Coordenação/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Químicos , Marcadores de Spin , Temperatura
13.
Acta Biochim Pol ; 59(1): 27-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428151

RESUMO

The dietary carotenoids provide photoprotection to photosynthetic organisms, the eye and the skin. The protection mechanisms involve both quenching of singlet oxygen and of damaging free radicals. The mechanisms for singlet oxygen quenching and protection against free radicals are quite different - indeed, under some conditions, quenching of free radicals can lead to a switch from a beneficial anti-oxidant process to damaging pro-oxidative situation. Furthermore, while skin protection involves ß-carotene or lycopene from a tomato-rich diet, protection of the macula involves the hydroxyl-carotenoids (xanthophylls) zeaxanthin and lutein. Time resolved studies of singlet oxygen and free radicals and their interaction with carotenoids via pulsed laser and fast electron spectroscopy (pulse radiolysis) and the possible involvement of amino acids are discussed and used to (1) speculate on the anti- and pro-oxidative mechanisms, (2) determine the most efficient singlet oxygen quencher and (3) demonstrate the benefits to photoprotection of the eye from the xanthophylls rather than from hydrocarbon carotenoids such as ß-carotene.


Assuntos
Antioxidantes/metabolismo , Carotenoides/metabolismo , Alimentos , Radicais Livres/metabolismo , Oxigênio Singlete/metabolismo , Antioxidantes/química , Carotenoides/química , Radicais Livres/química , Humanos , Oxirredução , Oxigênio Singlete/química
14.
Inorg Chem ; 51(3): 1450-61, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22276979

RESUMO

The Pd(II) complexes [Pd([9]aneS(3))(2)](PF(6))(2)·2MeCN (1) ([9]aneS(3) = 1,4,7-trithiacyclononane) and [Pd([18]aneS(6))](PF(6))(2) (2) ([18]aneS(6) = 1,4,7,10,13,16-hexathiacyclooctadecane) can be oxidized electrochemically or chemically oxidized with 70% HClO(4) to [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively. These centers have been characterized by single crystal X-ray diffraction, and by UV/vis and multifrequency electron paramagnetic resonance (EPR) spectroscopies. The single crystal X-ray structures of [Pd(III)([9]aneS(3))(2)](ClO(4))(6)·(H(3)O)(3)·(H(2)O)(4) (3) at 150 K and [Pd([18]aneS(6))](ClO(4))(6)·(H(5)O(2))(3) (4) at 90 K reveal distorted octahedral geometries with Pd-S distances of 2.3695(8), 2.3692(8), 2.5356(9) and 2.3490(6), 2.3454(5), 2.5474(6) Å, respectively, consistent with Jahn-Teller distortion at a low-spin d(7) Pd(III) center. The Pd(II) compound [Pd([9]aneS(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(1/2) = +0.57 V vs. Fc(+)/Fc assigned to a formal Pd(III)/Pd(II) couple. Multifrequency (Q-, X-, S-, and L-band) EPR spectroscopic analysis of [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) gives g(iso) = 2.024, |A(iso(Pd))| = 18.9 × 10(-4) cm(-1); g(xx) = 2.046, g(yy) = 2.041, g(zz) = 2.004; |A(xx(Pd))| = 24 × 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 14 × 10(-4) cm(-1), |a(xx(H))| = 4 × 10(-4) cm(-1), |a(yy(H))| = 5 × 10(-4) cm(-1), |a(zz(H))| = 5.5 × 10(-4) cm(-1) for [Pd([9]aneS(3))(2)](3+), and g(iso) = 2.015, |A(iso(Pd))| = 18.8× 10(-4) cm(-1); g(xx) = 2.048 g(yy) = 2.036, g(zz) = 1.998; |a(xx(H))| = 5, |a(yy(H))| = 5, |a(zz(H))| = 6 × 10(-4) cm(-1); |A(xx(Pd))| = 23× 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 4 × 10(-4) cm(-1) for [Pd([18]aneS(6))](3+). Both [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) exhibit five-line superhyperfine splitting in the g(zz) region in their frozen solution EPR spectra. Double resonance spectroscopic measurements, supported by density functional theory (DFT) calculations, permit assignment of this superhyperfine to through-bond coupling involving four (1)H centers of the macrocyclic ring. Analysis of the spin Hamiltonian parameters for the singly occupied molecular orbital (SOMO) in these complexes gives about 20.4% and 25% Pd character in [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively, consistent with the compositions calculated from scalar relativistic DFT calculations.

15.
Chem Commun (Camb) ; 48(18): 2430-2, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22274943

RESUMO

A novel family of paramagnetic tetranuclear ferrous cubanes is reported. Two complexes from this family are described and their magnetic properties are discussed in relation to their structures.


Assuntos
Hidrocarbonetos/química , Ferro/química , Fenômenos Magnéticos , Compostos Organometálicos/química
16.
Mol Nutr Food Res ; 56(2): 205-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22162194

RESUMO

Molecular mechanisms associated with the anti-/pro-oxidative properties of carotenoids (CARs) are described in organic solvents, micro-heterogeneous environments and model lipid membranes and in cellular suspensions. Singlet oxygen is important in the skin and eye and CARs are efficient singlet oxygen (SO) quenchers with corresponding rate constants near diffusion controlled (typically app. 10¹° M⁻¹ s⁻¹) with lycopene (LYC) exhibiting the most efficient quenching in organic solvents. However, in membrane environments there is little or no difference in the quenching efficiency between the dietary CARs. Furthermore, aggregation of CARs, particularly those in the macula (lutein and zeaxanthin), markedly reduces SO quenching efficiency. Free radical interactions with CARs leads to at least three processes, electron and hydrogen atom transfer and adduct formation. The most studied is electron transfer where the CAR loses an electron to become a radical cation. The reactivity/lifetime of such CAR radicals may lead to a switch from anti- to pro-oxidant behaviour of CARs. These reactions are related to CAR redox potentials with LYC being the lowest (most easily oxidised) allowing LYC to reduce/repair all other CAR radical cations and LYC 'sacrificed' where mixtures of CARs are present in oxidative environments. Such redox-controlled reactions may lead to deleterious as well as beneficial health effects.


Assuntos
Antioxidantes/fisiologia , Carotenoides/química , Carotenoides/farmacologia , Animais , Carotenoides/fisiologia , Ensaios Clínicos como Assunto , Dieta , Radicais Livres/metabolismo , Humanos , Luteína/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Oxigênio Singlete/metabolismo , Xantofilas/metabolismo , Zeaxantinas
17.
J Magn Reson ; 213(1): 206-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22000629

RESUMO

A simple design for an in situ, three-electrode spectroelectrochemical cell is reported that can be used in commercial Q- and W-band (ca. 34 and 94 GHz, respectively) electron paramagnetic resonance (EPR) spectrometers, using standard sample tubing (1.0 and 0.5 mm inner diameter, respectively) and within variable temperature cryostat systems. The use of the cell is demonstrated by the in situ generation of organic free radicals (quinones and diimines) in fluid and frozen media, transition metal ion radical anions, and on the enzyme nitric oxide synthase reductase domain (NOSrd), in which a pair of flavin radicals are generated.


Assuntos
Eletroquímica/instrumentação , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Anisotropia , Eletrodos , Eletrólise , Mononucleotídeo de Flavina/análise , Flavina-Adenina Dinucleotídeo/análise , Radicais Livres/análise , Congelamento , Indicadores e Reagentes , Oxirredução , Oxirredutases/análise , Complexo de Proteínas do Centro de Reação Fotossintética/química , Piridinas/análise , Temperatura , Ubiquinona/análise
18.
Chemistry ; 17(37): 10246-58, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21837715

RESUMO

The Ni(II) complexes [Ni([9]aneNS(2)-CH(3))(2)](2+) ([9]aneNS(2)-CH(3)=N-methyl-1-aza-4,7-dithiacyclononane), [Ni(bis[9]aneNS(2)-C(2)H(4))](2+) (bis[9]aneNS(2)-C(2)H(4)=1,2-bis-(1-aza-4,7-dithiacyclononylethane) and [Ni([9]aneS(3))(2)](2+) ([9]aneS(3)=1,4,7-trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal Ni(III) products, which have been characterized by X-ray crystallography, UV/Vis and multi-frequency EPR spectroscopy. The single-crystal X-ray structure of [Ni(III)([9]aneNS(2)-CH(3))(2)](ClO(4))(6)·(H(5)O(2))(3) reveals an octahedral co-ordination at the Ni centre, while the crystal structure of [Ni(III)(bis[9]aneNS(2)-C(2)H(4))](ClO(4))(6)·(H(3)O)(3)·3H(2)O exhibits a more distorted co-ordination. In the homoleptic analogue, [Ni(III)([9]aneS(3))(2)](ClO(4))(3), structurally characterized at 30 K, the Ni-S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn-Teller distorted octahedral stereochemistry. [Ni([9]aneNS(2)-CH(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(½)=+1.10 V versus Fc(+)/Fc assigned to a formal Ni(III)/Ni(II) couple. [Ni(bis[9]aneNS(2)-C(2)H(4))](PF(6))(2) exhibits a one-electron oxidation process at E(½)=+0.98 V and a reduction process at E(½)=-1.25 V assigned to Ni(II)/Ni(III) and Ni(II)/Ni(I) couples, respectively. The multi-frequency X-, L-, S-, K-band EPR spectra of the 3+ cations and their 86.2% (61)Ni-enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6%, 42.8% and 37.2% Ni character in [Ni([9]aneNS(2)-CH(3))(2)](3+), [Ni(bis[9]aneNS(2)-C(2)H(4))](3+) and [Ni([9]aneS(3))(2)](3+), respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S-thioether centres. EPR spectra for [(61)Ni([9]aneS(3))(2)](3+) are consistent with a dynamic Jahn-Teller distortion in this compound.

19.
Dalton Trans ; 40(6): 1267-78, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21186389

RESUMO

The first examples of vinylidene complexes of the cycloheptatrienyl tungsten system [W(C=CHR)(dppe)(η-C7H7)](+) (dppe = Ph2PCH2CH2PPh2; R = H, 3; Ph, 4; C6H4-4-Me, 5) have been synthesised by reaction of [WBr(dppe)(η-C7H7)], 1, with terminal alkynes HC≡CR; a one-pot synthesis of 1 from [WBr(CO)2(η-C7H7)] facilitates its use as a precursor. The X-ray structure of 4[PF6] reveals that the vinylidene ligand substituents lie in the pseudo mirror plane of the W(dppe)(η-C7H7) auxiliary (vertical orientation) with the phenyl group located syn to the cycloheptatrienyl ring. Variable temperature ¹H NMR investigations on [W(C=CH2)(dppe)(η-C7H7)][PF6], 3, estimate the energy barrier to rotation about the W=C(α) bond as 62.5 ± 2 kJ mol⁻¹; approximately 10 kJ mol⁻¹ greater than for the molybdenum analogue. Deprotonation of 4 and 5 with KOBu(t) yields the alkynyls [W(C≡CR)(dppe)(η-C7H7)] (R = Ph, 6; C6H4-4-Me, 7) which undergo a reversible one-electron oxidation at a glassy carbon electrode in CH2Cl2 with E(½) values approximately 0.12 V negative of Mo analogues. The 17-electron radicals [6](+) and [7](+) have been investigated by spectroelectrochemical IR, UV-visible and EPR methods. The electronic structures of representative vinylidene (3) and alkynyl (6) complexes have been investigated at the B3LYP/Def2-SVP level. In both cases, electronic structure is characterised by a frontier orbital with significant metal d(z²)character and this dominates the structural and spectroscopic properties of the system.

20.
Dalton Trans ; 39(47): 11424-31, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20981380

RESUMO

The paramagnetic aryl-alkynyl complexes [Mo(C≡CAr)(dppe)(η-C(7)H(7))](+) (dppe = Ph(2)PCH(2)CH(2)PPh(2); Ar = C(6)H(5), [1](+); C(6)D(5), [2](+); C(6)H(4)-4-F, [3](+); C(6)H(4)-4-Me, [5](+)) and [Mo(C≡CBu(t))(dppe)(η-C(7)H(7))](+) [4](+), have been investigated in a combined EPR and ENDOR study. Direct experimental evidence for the delocalisation of unpaired spin density over the framework of an aryl-alkynyl ligand has been obtained. The X-band solution EPR spectrum of the 4-fluoro derivative, [3](+), exhibits resolved hyperfine coupling to the remote para position of the aryl group [a(iso)((19)F) = 4.5 MHz, (1.6 G)] in addition to couplings attributable to (95/97)Mo, (31)P and (1)H of the C(7)H(7) ring. A full analysis of the (1)H ENDOR spectra is restricted by the low g anisotropy of the system which prevents the use of orientation selection. However, inter-comparison of the (1)H cw-ENDOR frozen solution spectra of [1](+), [2](+), [4](+) and [5](+), combined with spectral simulation informed by calculated values derived from DFT investigations, has facilitated estimation of the experimental a(iso)((1)H) hyperfine couplings of [1](+) including the ortho, ±3.7 MHz (±1.3 G) and para, ±3.9 MHz (±1.4 G) positions of the C(6)H(5) substituent of the aryl-alkynyl ligand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...