Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 127(5): e2021JE007087, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35860764

RESUMO

A widely hypothesized but complex transition from widespread fluvial activity to predominantly aeolian processes is inferred on Mars based on remote sensing data observations of ancient landforms. However, the lack of analysis of in situ martian fluvial deposits hinders our understanding of the flow regime nature and sustainability of the martian fluvial activity and the hunt for ancient life. Studying analogs from arid zones on Earth is fundamental to quantitatively understanding geomorphic processes and climate drivers that might have dominated during early Mars. Here we investigate the formation and preservation of fluvial depositional systems in the eastern Sahara, where the largest arid region on Earth hosts important repositories of past climatic changes. The fluvial systems are composed of well-preserved single-thread sinuous to branching ridges and fan-shaped deposits interpreted as deltas. The systems' configuration and sedimentary content suggest that ephemeral rivers carved these landforms by sequential intermittent episodes of erosion and deposition active for 10-100s years over ∼10,000 years during the late Quaternary. Subsequently, these landforms were sculpted by a marginal role of rainfall and aeolian processes with minimum erosion rates of 1.1 ± 0.2 mm/yr, supplying ∼96 ± 24 × 1010 m3 of disaggregated sediment to adjacent aeolian dunes. Our results imply that similar martian fluvial systems preserving single-thread, short distance source-to-sink courses may have formed due to transient drainage networks active over short durations. Altogether, this study adds to the growing recognition of the complexity of interpreting climate history from orbital images of landforms.

2.
Space Sci Rev ; 217(1): 24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33612866

RESUMO

Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 µrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 µrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.

3.
J Geophys Res Planets ; 122(12): 2510-2543, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29497589

RESUMO

The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 µm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 µm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.

4.
Science ; 350(6257): aac7575, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26450214

RESUMO

The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).


Assuntos
Lagos , Marte , Clima , Exumação , Paleontologia
5.
Science ; 343(6169): 1242777, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324272

RESUMO

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Água , Baías , Carbono/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/classificação , Hidrogênio/análise , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/química , Nitrogênio/análise , Oxirredução , Oxigênio/análise , Fósforo/análise , Salinidade , Enxofre/análise , Enxofre/química
6.
Science ; 343(6169): 1247166, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324273

RESUMO

We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced (3)He, (21)Ne, and (36)Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.


Assuntos
Radiação Cósmica , Evolução Planetária , Exobiologia , Meio Ambiente Extraterreno/química , Marte , Gases Nobres/análise , Biomarcadores/análise , Biomarcadores/química , Sedimentos Geológicos , Isótopos/análise , Isótopos/química , Compostos Orgânicos/análise , Compostos Orgânicos/química , Doses de Radiação , Datação Radiométrica , Propriedades de Superfície
7.
Science ; 343(6169): 1243480, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324271

RESUMO

Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.


Assuntos
Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Marte , Minerais/química , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/química , Sedimentos Geológicos/análise , Minerais/análise , Silicatos/análise , Silicatos/química , Compostos de Silício/análise , Compostos de Silício/química
8.
Science ; 341(6153): 1239505, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072928

RESUMO

The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

9.
Science ; 340(6136): 1068-72, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23723230

RESUMO

Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

10.
Science ; 290(5498): 1927-37, 2000 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-11110654

RESUMO

Layered and massive outcrops on Mars, some as thick as 4 kilometers, display the geomorphic attributes and stratigraphic relations of sedimentary rock. Repeated beds in some locations imply a dynamic depositional environment during early martian history. Subaerial (such as eolian, impact, and volcaniclastic) and subaqueous processes may have contributed to the formation of the layers. Affinity for impact craters suggests dominance of lacustrine deposition; alternatively, the materials were deposited in a dry, subaerial setting in which atmospheric density, and variations thereof mimic a subaqueous depositional environment. The source regions and transport paths for the materials are not preserved.


Assuntos
Marte , Atmosfera , Pressão Atmosférica , Exobiologia , Meio Ambiente Extraterreno , Sedimentos Geológicos , Erupções Vulcânicas , Água
11.
Science ; 288(5475): 2330-5, 2000 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-10875910

RESUMO

Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.


Assuntos
Marte , Água , Meio Ambiente Extraterreno
12.
Nature ; 404(6774): 161-4, 2000 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-10724162

RESUMO

Polar processes can be sensitive indicators of global climate, and the geological features associated with polar ice caps can therefore indicate evolution of climate with time. The polar regions on Mars have distinctive morphologic and climatologic features: thick layered deposits, seasonal CO2 frost caps extending to mid latitudes, and near-polar residual frost deposits that survive the summer. The relationship of the seasonal and residual frost caps to the layered deposits has been poorly constrained, mainly by the limited spatial resolution of the available data. In particular, it has not been known if the residual caps represent simple thin frost cover or substantial geologic features. Here we show that the residual cap on the south pole is a distinct geologic unit with striking collapse and erosional topography; this is very different from the residual cap on the north pole, which grades into the underlying layered materials. These findings indicate that the differences between the caps are substantial (rather than reflecting short-lived differences in frost cover), and so support the idea of long-term asymmetry in the polar climates of Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Dióxido de Carbono/análise , Evolução Planetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...