Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36146352

RESUMO

This two-experiment study aimed to examine the effects of different habitual foot placement angles and also the effects of manipulating the foot placement angle on the kinetics, three-dimensional kinematics and muscle forces of the squat. In experiment 1, seventy lifters completed squats at 70% of their one repetition maximum using a self-preferred placement angle. They were separated based on their habitual foot angle into three groups HIGH, MEDIUM and LOW. In experiment 2, twenty lifters performed squats using the same relative mass in four different foot placement angle conditions (0°, 21°, 42° and control). Three-dimensional kinematics were measured using an eight-camera motion analysis system, ground reaction forces (GRF) using a force platform, and muscle forces using musculoskeletal modelling techniques. In experiment 1, the impulse of the medial GRF, in the descent and ascent phases, was significantly greater in the HIGH group compared to LOW, and in experiment 2 statistically greater in the 42° compared to the 21°, 0° and control conditions. Experiment 2 showed that the control condition statistically increased quadriceps muscle forces in relation to 0°, whereas the 0° condition significantly enhanced gluteus maximus, gastrocnemius and soleus forces compared to control. In experiment 1, patellofemoral joint stress was significantly greater in the HIGH group compared to LOW, and in experiment 2, patellar and patellofemoral loading were statistically greater in the control compared to the 42°, 21°, 0° and control conditions. Owing to the greater medial GRF's, increased foot placement angles may improve physical preparedness for sprint performance and rapid changes of direction. Reducing the foot angle may attenuate the biomechanical mechanisms linked to the aetiology of knee pathologies and to promote gluteus maximus, gastrocnemius and soleus muscular development. As such, though there does not appear to be an optimal foot placement angle, the observations from this study can be utilised by both strength and conditioning and sports therapy practitioners seeking to maximise training and rehabilitative adaptations.


Assuntos
, Postura , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/fisiologia , Extremidade Inferior , Masculino , Músculo Esquelético/fisiologia , Postura/fisiologia
2.
Sports (Basel) ; 10(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36136391

RESUMO

This two-experiment study aimed to explore habitual and manipulated stance widths on squat biomechanics. In experiment one, 70 lifters completed back squats at 70%, 1 repetition maximum (1RM), and were split into groups (NARROW < 1.06 * greater trochanter width (GTW), MID 1.06−1.18 * GTW and WIDE > 1.37 * GTW) according to their self-selected stance width. In experiment two, 20 lifters performed squats at 70%, 1RM, in three conditions (NARROW, MID and WIDE, 1.0, 1.25 and 1.5 * GTW). The three-dimensional kinematics were measured using a motion capture system, ground reaction forces (GRF) using a force platform, and the muscle forces using musculoskeletal modelling. In experiment two, the peak power was significantly greater in the NARROW condition, whereas both experiments showed the medial GRF impulse was significantly greater in the WIDE stance. Experiment two showed the NARROW condition significantly increased the quadriceps forces, whereas both experiments showed that the WIDE stance width significantly enhanced the posterior-chain muscle forces. The NARROW condition may improve the high mechanical power movement performance and promote the quadriceps muscle development. Greater stance widths may improve sprint and rapid change-of-direction performance and promote posterior-chain muscle hypertrophy. Whilst it appears that there is not an optimal stance width, these observations can be utilized by strength and conditioning practitioners seeking to maximize training adaptations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34501831

RESUMO

The aim of the current study was to examine the efficacy of resisted sled-based training compared to traditional unresisted sprint training in terms of mediating improvements in speed, agility, and power during an eight-week period of in-season training in elite rugby league players. Participants were randomly separated into either resisted sled or traditional sprint-based training groups and they completed an eight-week in-season training block with training prescribed based on the group to which they were assigned. Measures of 5 m, 10 m, and 20 m sprint times in addition to countermovement jump height and 505-agility test time were measured at baseline, four-weeks and eight-weeks. For sprint-based outcomes, although both groups improved significantly, there were no statistical differences between the two training methods. However, at the eight-week time point there were significant improvements in 505-agility test (sprint group: baseline = 2.45 and eight-weeks = 2.42 s/sled group: baseline = 2.43 and eight-weeks = 2.37 s) and countermovement jump (sprint group: baseline = 39.18 and eight-weeks = 39.49 cm/sled group: baseline = 40.43 and eight-weeks = 43.07 cm) performance in the sled training group. Therefore, the findings from this investigation may be important to strength and conditioning coaches working in an elite rugby league in that resisted sled training may represent a more effective method of sprint training prescription.


Assuntos
Desempenho Atlético , Futebol Americano , Treinamento Resistido , Corrida , Humanos , Estações do Ano
4.
J Hum Kinet ; 35: 15-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23487393

RESUMO

Three-dimensional (3-D) kinematic analyses are used widely in both sport and clinical examinations. However, this procedure depends on reliable palpation of anatomical landmarks and mal-positioning of markers between sessions may result in improperly defined segment co-ordinate system axes which will produce in-consistent joint rotations. This had led some to question the efficacy of this technique. The aim of the current investigation was to assess the reliability of the anatomical frame definition when quantifying 3-D kinematics of the lower extremities during running. Ten participants completed five successful running trials at 4.0 m·s(-1) ± 5%. 3-D angular joint kinematics parameters from the hip, knee and ankle were collected using an eight camera motion analysis system. Two static calibration trials were captured. The first (test) was conducted prior to the running trials following which anatomical landmarks were removed. The second was obtained following completion of the running trials where anatomical landmarks were re-positioned (retest). Paired samples t-tests were used to compare 3-D kinematic parameters quantified using the two static trials, and intraclass correlations were employed to examine the similarities between the sagittal, coronal and transverse plane waveforms. The results indicate that no significant (p>0.05) differences were found between test and retest 3-D kinematic parameters and strong (R(2)≥0.87) correlations were observed between test and retest waveforms. Based on the results obtained from this investigation, it appears that the anatomical co-ordinate axes of the lower extremities can be defined reliably thus confirming the efficacy of studies using this technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA