Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biochem Pharmacol ; 192: 114688, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274354

RESUMO

Signal Transducer and Activator of Transcription (STAT) 3 emerged rapidly as a high-value target for treatment of cancer. However, small-molecule STAT3 inhibitors have been slow to enter the clinic due, in part, to serious adverse events (SAE), including lactic acidosis and peripheral neuropathy, which have been attributed to inhibition of STAT3's mitochondrial function. Our group developed TTI-101, a competitive inhibitor of STAT3 that targets the receptor pY705-peptide binding site within the Src homology 2 (SH2) domain to block its recruitment and activation. TTI-101 has shown target engagement, no toxicity, and evidence of clinical benefit in a Phase I study in patients with solid tumors. Here we report that TTI-101 did not affect mitochondrial function, nor did it cause STAT3 aggregation, chemically modify STAT3 or cause neuropathic pain. Instead, TTI-101 unexpectedly suppressed neuropathic pain induced by chemotherapy or in a spared nerve injury model. Thus, in addition to its direct anti-tumor effect, TTI-101 may be of benefit when administered to cancer patients at risk of developing chemotherapy-induced peripheral neuropathy (CIPN).


Assuntos
Hiperalgesia/tratamento farmacológico , Naftóis/uso terapêutico , Neuralgia/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Tato , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/farmacologia , Neuralgia/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia
3.
Neurobiol Pain ; 7: 100043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32510006

RESUMO

BACKGROUND: Chronic pain and depression often co-occur. The mechanisms underlying this comorbidity are incompletely understood. Here, we investigated the role of CD3+ T cells in an inflammatory model of comorbid persistent mechanical allodynia, spontaneous pain, and depression-like behavior in mice. METHODS: C57Bl/6 wt and Rag2 -/- mice were compared in their response to intraplantar administration of complete Freund's adjuvant (CFA). Mechanical allodynia, spontaneous pain and depression-like behavior were assessed by von Frey, conditioned place preference and forced swim test respectively. RESULTS: Resolution of mechanical allodynia, spontaneous pain, and depression-like behavior was markedly delayed in Rag2 -/- mice that are devoid of adaptive immune cells. Reconstitution of Rag2 -/- mice with CD3+ T cells from WT mice before CFA injection normalized the resolution of indicators of pain and depression-like behavior. T cells did not contribute to onset or severity of indicators of pain and depression-like behavior. The lack of T cells did not affect cytokine expression in the paw, spinal cord and brain, indicating that the delayed resolution was not resulting from prolonged (neuro)inflammation. CONCLUSIONS: Our findings show that T cells are critical for the natural resolution of mechanical allodynia, spontaneous pain, and depression-like behavior after an inflammatory challenge. Dysregulation of this T cell-mediated resolution pathway could contribute to the comorbidity of chronic pain and depression. SIGNIFICANCE: Chronic pain and depression are frequently associated with signs of inflammation. However, general immunosuppression is not sufficient to resolve comorbid pain and depression. Here we demonstrate that T cells are required for resolution of comorbid persistent mechanical allodynia, spontaneous pain, and depression in a model of peripheral inflammation, indicating the immune system can contribute to both onset and resolution of these comorbidities. Enhancing pro-resolution effects of T cells may have a major impact to treat patients with comorbid persistent pain and depression.

4.
Pain ; 161(10): 2344-2352, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32427749

RESUMO

Understanding the mechanisms that drive transition from acute to chronic pain is essential to identify new therapeutic targets. The importance of endogenous resolution pathways acting as a "brake" to prevent development of chronic pain has been largely ignored. We examined the role of interleukin-10 (IL-10) in resolution of neuropathic pain induced by cisplatin. In search of an underlying mechanism, we studied the effect of cisplatin and IL-10 on spontaneous activity (SA) in dorsal root ganglia neurons. Cisplatin (2 mg/kg daily for 3 days) induced mechanical hypersensitivity that resolved within 3 weeks. In both sexes, resolution of mechanical hypersensitivity was delayed in Il10 mice, in WT mice treated intrathecally with neutralizing anti-IL-10 antibody, and in mice with cell-targeted deletion of IL-10R1 on advillin-positive sensory neurons. Electrophysiologically, small- to medium-sized dorsal root ganglia neurons from cisplatin-treated mice displayed an increase in the incidence of SA. Cisplatin treatment also depolarized the resting membrane potential, and decreased action potential voltage threshold and rheobase, while increasing ongoing activity at -45 mV and the amplitude of depolarizing spontaneous fluctuations. In vitro addition of IL-10 (10 ng/mL) reversed the effect of cisplatin on SA and on the depolarizing spontaneous fluctuation amplitudes, but unexpectedly had little effect on the other electrophysiological parameters affected by cisplatin. Collectively, our findings challenge the prevailing concept that IL-10 resolves pain solely by dampening neuroinflammation and demonstrate in a model of chemotherapy-induced neuropathic pain that endogenous IL-10 prevents transition to chronic pain by binding to IL-10 receptors on sensory neurons to regulate their activity.


Assuntos
Hiperalgesia/metabolismo , Potenciais de Ação , Animais , Cisplatino/toxicidade , Feminino , Gânglios Espinais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Interleucina-10 , Masculino , Camundongos , Células Receptoras Sensoriais
5.
Pain ; 160(6): 1459-1468, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30720585

RESUMO

The mechanisms responsible for the persistence of chemotherapy-induced peripheral neuropathy (CIPN) in a significant proportion of cancer survivors are still unknown. Our previous findings show that CD8 T cells are necessary for the resolution of paclitaxel-induced mechanical allodynia in male mice. In this study, we demonstrate that CD8 T cells are not only essential for resolving cisplatin-induced mechanical allodynia, but also to normalize spontaneous pain, numbness, and the reduction in intraepidermal nerve fiber density in male and female mice. Resolution of CIPN was not observed in Rag2 mice that lack T and B cells. Reconstitution of Rag2 mice with CD8 T cells before cisplatin treatment normalized the resolution of CIPN. In vivo education of CD8 T cells by cisplatin was necessary to induce resolution of CIPN in Rag2 mice because adoptive transfer of CD8 T cells from naive wild-type mice to Rag2 mice after completion of chemotherapy did not promote resolution of established CIPN. The CD8 T-cell-dependent resolution of CIPN does not require epitope recognition by the T-cell receptor. Moreover, adoptive transfer of cisplatin-educated CD8 T cells to Rag2 mice prevented CIPN development induced by either cisplatin or paclitaxel, indicating that the activity of the educated CD8 T is not cisplatin specific. In conclusion, resolution of CIPN requires in vivo education of CD8 T cells by exposure to cisplatin. Future studies should examine whether ex vivo CD8 T cell education could be applied as a therapeutic strategy for treating or preventing CIPN in patients.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Cisplatino , Hiperalgesia/tratamento farmacológico , Paclitaxel , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Modelos Animais de Doenças , Feminino , Hiperalgesia/etiologia , Masculino , Camundongos Transgênicos , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Dor/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/induzido quimicamente
6.
Neuropsychopharmacology ; 43(13): 2597-2605, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30054585

RESUMO

In humans, depression is often associated with low-grade inflammation, activation of the tryptophan/kynurenine pathway, and mild lymphopenia. Preclinical research confirms that inflammation induces depression-like behavior through activation of the tryptophan/kynurenine pathway. However, the mechanisms governing recovery from depression are unknown. Understanding the pathways leading to resolution of depression will likely lead to identification of novel targets for treatment. We investigated the contribution of T lymphocytes to the resolution of lipopolysaccharide-induced depression-like behavior. Duration of depression-like behavior was markedly prolonged in mice without mature T or B lymphocytes (Rag1-/- mice). This prolonged depression-like behavior was associated with persistent upregulation of the tryptophan-metabolizing enzyme indoleamine-2,3-dioxygenase (Ido)1 in the prefrontal cortex (PFC). Reconstitution of Rag1-/- mice with T lymphocytes normalized resolution of depression-like behavior and expression of Ido1 in the PFC. During resolution of inflammation-induced depression-like behavior, T lymphocytes accumulated in the meninges and were required for induction of interleukin (IL)-10 in the meninges and the PFC. Inhibition of IL-10 signaling by nasal administration of neutralizing anti-IL-10 antibody to WT mice led to persistent upregulation of Ido1 in the PFC and prolonged depression-like behavior. Conversely, nasal administration of recombinant IL-10 in Rag1-/- mice normalized Ido1 expression and resolution of depression-like behavior. In conclusion, the present data show for the first time that resolution of inflammation-induced depression is an active process requiring T lymphocytes acting via an IL-10-dependent pathway to decrease Ido1 expression in the brain. We propose that targeting the T lymphocyte/IL-10 resolution pathway could represent a novel approach to promote recovery from major depressive disorder.


Assuntos
Encéfalo/imunologia , Depressão/imunologia , Interleucina-10/imunologia , Transdução de Sinais/fisiologia , Linfócitos T/imunologia , Administração Intranasal , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/induzido quimicamente , Depressão/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-10/administração & dosagem , Interleucina-10/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/metabolismo
7.
Brain Behav Immun ; 66: 94-102, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28709913

RESUMO

Pain and depression often co-occur, but the underlying mechanisms have not been elucidated. Here, we used the spared nerve injury (SNI) model in mice to induce both neuropathic pain and depression-like behavior. We investigated whether brain interleukin (IL)-1 signaling and activity of kynurenine 3-monoxygenase (KMO), a key enzyme for metabolism of kynurenine into the neurotoxic NMDA receptor agonist quinolinic acid, are necessary for comorbid neuropathic pain and depression-like behavior. SNI mice showed increased expression levels of Il1b and Kmo mRNA in the contralateral side of the brain. The SNI-induced increase of Kmo mRNA was associated with increased KMO protein and elevated quinolinic acid and reduced kynurenic acid in the contralateral hippocampus. The increase in KMO-protein in response to SNI mostly took place in hippocampal NeuN-positive neurons rather than microglia. Inhibition of brain IL-1 signaling by intracerebroventricular administration of IL-1 receptor antagonist after SNI prevented the increase in Kmo mRNA and depression-like behavior measured by forced swim test. However, inhibition of brain IL-1 signaling has no effect on mechanical allodynia. In addition, intracerebroventricular administration of the KMO inhibitor Ro 61-8048 abrogated depression-like behavior without affecting mechanical allodynia after SNI. We show for the first time that the development of depression-like behavior in the SNI model requires brain IL-1 signaling and activation of neuronal KMO, while pain is independent of this pathway. Inhibition of KMO may represent a promising target for treating depression.


Assuntos
Depressão/enzimologia , Quinurenina 3-Mono-Oxigenase/metabolismo , Neuralgia/enzimologia , Neurônios/enzimologia , Animais , Depressão/complicações , Modelos Animais de Doenças , Hipocampo/enzimologia , Hiperalgesia/complicações , Hiperalgesia/enzimologia , Interleucina-1/metabolismo , Quinurenina 3-Mono-Oxigenase/genética , Masculino , Camundongos Endogâmicos C57BL , Microglia/enzimologia , Neuralgia/complicações , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/enzimologia , RNA Mensageiro/metabolismo , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...