Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 25(9): 1038-1046, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32462959

RESUMO

Hypoxic solid tumors induce the stabilization of hypoxia-inducible factor 1 alpha (HIF1α), which stimulates the expression of many glycolytic enzymes and hypoxia-responsive genes. A high rate of glycolysis supports the energetic and material needs for tumors to grow. Fructose-1,6-bisphosphate aldolase A (ALDOA) is an enzyme in the glycolytic pathway that promotes the expression of HIF1α. Therefore, inhibition of ALDOA activity represents a potential therapeutic approach for a range of cancers by blocking two critical cancer survival mechanisms. Here, we present a luminescence-based strategy to determine ALDOA activity. The assay platform was developed by integrating a previously established ALDOA activity assay with a commercial NAD/NADH detection kit, resulting in a significant (>12-fold) improvement in signal/background (S/B) compared with previous assay platforms. A screening campaign using a mixture-based compound library exhibited excellent statistical parameters of Z' (>0.8) and S/B (~20), confirming its robustness and readiness for high-throughput screening (HTS) application. This assay platform provides a cost-effective method for identifying ALDOA inhibitors using a large-scale HTS campaign.


Assuntos
Frutose-Bifosfato Aldolase/isolamento & purificação , Ensaios de Triagem em Larga Escala , Análise Custo-Benefício , Frutose/genética , Frutose/metabolismo , Frutose-Bifosfato Aldolase/genética , Glicólise/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Luminescência
2.
SLAS Discov ; 23(1): 1-10, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28820953

RESUMO

A high rate of glycolysis, which supplies energy and materials for anabolism, is observed in a wide range of tumor cells, making it a potential pathway to control cancer growth. ALDOA is a multifunctional enzyme in the glycolytic pathway and also promotes HIF-1α, which is of importance in hypoxic solid tumors. The current method for assaying ALDOA activity involves monitoring the consumption of NADH in vitro using absorbance or intrinsic fluorescence via a coupled enzymatic reaction. Here, we report the development of a homogeneous biochemical assay that can overcome limitations of current methods, in particular for the application of high-throughput drug screening. The assay utilizes the commercially available Elite NADH Assay Kit, which incorporates an enzymatic reaction to measure the level of NADH using a fluorescent probe. Assay optimization and validation are discussed. Its feasibility for high-throughput screening (HTS) was demonstrated by screening 65,000 compounds for the identification of small molecules that inhibit ALDOA. Through a validation screen and dose-response evaluation, four inhibitors with IC50 below 10 µM were identified. In conclusion, we demonstrate that a traditional ALDOA assay can be transformed readily into a fluorescence-based assay utilizing a commercial NADH detection kit that is rapid, sensitive, inexpensive, and HTS friendly.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Frutose-Bifosfato Aldolase/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Corantes Fluorescentes , Glicólise/efeitos dos fármacos , Humanos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA