Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(25): e202400662, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376067

RESUMO

The hypercoordinate [SiH6]2- anion is not stable in solution. Here, we report the room temperature, solution stable molecular [SiH6]2- complex, [{KCa(NON)(OEt2)}2][SiH6] (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene)), where the [SiH6]2- anion is stabilised within a supramolecular assembly that mimics the solid-state environment of the anion in the lattice of K2SiH6. Solution-state reactivity of the complex towards carbon monoxide, benzaldehyde, azobenzene and acetonitrile is reported, yielding a range of reduction and C-C coupled products.

2.
Angew Chem Int Ed Engl ; 62(45): e202311044, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37718313

RESUMO

We report thermochromism in crystals of diphenyl diselenide (dpdSe) and diphenyl ditelluride (dpdTe), which is at variance with the commonly known mechanisms of thermochromism in molecular crystals. Variable temperature neutron diffraction studies indicated no conformational change, tautomerization or phase transition between 100 K and 295 K. High-pressure crystallography studies indicated no associated piezochromism in dpdSe and dpdTe crystals. The evolution of the crystal structures and their electronic band structure with pressure and temperature reveal the contributions of intramolecular and intermolecular factors towards the origin of thermochromism-especially the intermolecular Se⋅⋅⋅Se and Te⋅⋅⋅Te chalcogen bonds and torsional modes of vibrations around the dynamic Se-Se and Te-Te bonds. Further, a co-crystal of dpdSe with iodine (dpdSe-I2 ) and an alloy crystal of dpdSe and dpdTe implied a predominantly intramolecular origin of the observed thermochromism associated with vibronic coupling.

3.
Angew Chem Int Ed Engl ; 62(30): e202305582, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37236910

RESUMO

Reduction of a range of amido- and aryloxy-aluminum dihydride complexes, e.g. [AlH2 (NR3 ){N(SiMe3 )2 }] (NR3 =NMe3 or N-methylpiperidine (NMP)), with ß-diketiminato dimagnesium(I) reagents, [{(Ar Nacnac)Mg}2 ] (Ar Nacnac=[HC(MeCNAr)2 ]- , Ar=mesityl (Mes) or 2,6-xylyl (Xyl)), have afforded deep red mixed valence aluminum hydride cluster compounds, [Al6 H8 (NR3 )2 {Mg(Ar Nacnac)}4 ], which have an average Al oxidation state of +0.66, the lowest for any well-defined aluminum hydride compound. In the solid-state, the clusters are shown to have distorted octahedral Al6 cores, having zero-valent Al axial sites and mono-valent AlH2 - equatorial units. Several novel by-products were isolated from the reactions that gave the clusters, including the Mg-Al bonded magnesio-aluminate complexes, [(Ar Nacnac)(Me3 N)Mg-Al(µ-H)3 [{Mg(Ar Nacnac)}2 (µ-H)]]. Computational analyses of one aluminum hydride cluster revealed its Al6 core to be electronically delocalized, and to possess one unoccupied, and six occupied, skeletal molecular orbitals.

4.
Angew Chem Int Ed Engl ; 62(1): e202215218, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344462

RESUMO

The synthesis, characterisation and reactivity of two isostructural anionic magnesium and calcium complexes is reported. By X-ray and neutron diffraction techniques, the anionic hydrides are shown to exist as dimers, held together by a range of interactions between the two anions and two bridging potassium cations. Unlike the vast proportion of previously reported dimeric group 2 hydrides, which have hydrides that bridge two group 2 centres, here the hydrides are shown to be "terminal", but stabilised by interactions with the potassium cations. Both anionic hydrides were found to insert and couple CO under mild reaction conditions to give the corresponding group 2 cis-ethenediolate complexes. These cis-ethenediolate complexes were found to undergo salt elimination reactions with silyl chlorides, allowing access to small unsaturated disilyl ethers with a high percentage of their mass originating from the C1 source CO.

5.
Angew Chem Int Ed Engl ; 61(44): e202211948, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36094744

RESUMO

New heterometallic hydride complexes that involve the addition of {Mg-H} and {Zn-H} bonds to group 10 transition metals (Pd, Pt) are reported. The side-on coordination of a single {Mg-H} to Pd forms a well-defined σ-complex. In contrast, addition of three {Mg-H} or {Zn-H} bonds to Pd or Pt results in the formation of planar complexes with subtly different geometries. We compare their structures through experiment (X-ray diffraction, neutron diffraction, multinuclear NMR), computational methods (DFT, QTAIM, NCIPlot), and theoretical analysis (MO diagram, Walsh diagram). These species can be described as snapshots along a continuum of bonding between ideal trigonal planar and hexagonal planar geometries.

6.
Inorg Chem ; 61(22): 8406-8418, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609007

RESUMO

A PP(O)P pincer ligand based upon a peri-substituted acenaphthyl (Ace) scaffold and a secondary phosphine oxide, (5-Ph2P-Ace-6-)2P(O)H, was prepared and fully characterized including a neutron diffraction study. The reaction with [Ni(H2O)6]Cl2 and PdCl2 produced ionic metal(II) complexes [κ3-P,P',P''((5-Ph2P-Ace-6-)2P(OH))MCl]Cl, which upon addition of Et3N gave rise to zwitterionic metal(II) complexes κ3-P,P',P''((5-Ph2P-Ace-6-)2P(O))MCl (M = Ni, Pd). The reaction with Ni(COD)2 (COD = cyclooctadiene) provided the η3-cyclooctenyl Ni(II) complex κ3-P,P',P''((5-Ph2P-Ace-6-)2P(O))Ni(η3-C8H13). A detailed complementary bonding analysis of the P-H, P-O, and P-M interactions was carried out (M = Ni, Pd).

7.
Dalton Trans ; 50(25): 8685-8689, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34160514

RESUMO

A series of neutral magnesium and calcium complexes bearing an extremely bulky diamido ligand have been synthesised and crystallographically characterised. A number of these complexes feature rare group 2 metalaromatic interactions, such as the η6-coordination of benzene and 'agostic-like' C-H coordination, the latter previously unseen in neutral Mg and Ca complexes.

8.
Dalton Trans ; 50(22): 7604-7609, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33988210

RESUMO

Reaction of several N-heterocyclic carbenes, a carbodiphosphorane, and bis(diphenylphosphino)ethane (DPPE) with [BeX2(OEt2)2] (X = Br or I) have yielded a variety of beryllium dihalide adduct complexes, all of which were crystallographically characterised. Attempts to reduce the compounds to low oxidation state beryllium complexes using a variety of reducing agents have been carried out, but were of limited success. However, reaction of [(IPr)BeBr2] (IPr = :C{(DipNCH)2}; Dip = 2,6-diisopropylphenyl) with the aluminium(i) heterocycle, [:Al(DipNacnac)] (DipNacnac = [HC(MeCNDip)2]-) afforded the adduct complex, [{(IPr)(Br)Be(µ-H)}2], while reduction of [(IPr)BeBr2] with potassium naphthalenide gave the beryllium naphthalenediyl complex, [(IPr)Be(C10H8)]. Furthermore, reaction of [{(DPPE)BeI2}∞], with [:Al(DipNacnac)] led to insertion of the Al centre of the heterocycle into a Be-I bond, and formation of a rare example of an Al-Be bonded complex, [(DPPE)(i)Be-Al(i)(DipNacnac)].

9.
Angew Chem Int Ed Engl ; 59(28): 11250-11255, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239788

RESUMO

Hydrogenolysis of alkyl-substituted cyclopentadienyl (CpR ) ligated thorium tribenzyl complexes [(CpR )Th(p-CH2 -C6 H4 -Me)3 ] (1-6) afforded the first examples of molecular thorium trihydrido complexes [(CpR )Th(µ-H)3 ]n (CpR =C5 H2 (t Bu)3 or C5 H2 (SiMe3 )3 , n=5; C5 Me4 SiMe3 , n=6; C5 Me5 , n=7; C5 Me4 H, n=8; 7-10 and 12) and [(Cp# )12 Th13 H40 ] (Cp# =C5 H4 SiMe3 ; 13). The nuclearity of the metal hydride clusters depends on the steric profile of the cyclopentadienyl ligands. The hydrogenolysis intermediate, tetra-nuclear octahydrido thorium dibenzylidene complex [(Cpttt )Th(µ-H)2 ]4 (µ-p-CH-C6 H4 -Me)2 (Cpttt =C5 H2 (t Bu)3 ) (11) was also isolated. All of the complexes were characterized by NMR spectroscopy and single-crystal X-ray analysis. Hydride positions in [(CpMe4 )Th(µ-H)3 ]8 (CpMe4 =C5 Me4 H) were further precisely confirmed by single-crystal neutron diffraction. DFT calculations strengthen the experimental assignment of the hydride positions in the complexes 7 to 12.

10.
J Phys Chem Lett ; 10(22): 7224-7229, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31696712

RESUMO

Hydrophobic interactions are often explored in solution-state aggregation of molecules. However, an experimental electron density description about these interactions is still lacking. Here, we report a systematic study on the electronic nature of methyl···methyl hydrophobic interactions in a series of multicomponent crystals of biologically active molecules. Charge density models based on high-resolution X-ray diffraction allow the visualization of subtle details of electron density features in the interaction region. Our study classifies these interactions as atypical group···group interactions in contrast to σ-hole interactions, which are stabilized by the minimized electrostatic repulsion and maximized dispersion forces. For the first time, we quantified the solid-state entropic contribution from the torsional mode of the methyl groups in stabilizing these interactions by thermal motion analysis based on neutron diffraction as well as variable-temperature crystallography. The carbon atoms in methyl···methyl interactions show a unique upfield chemical shift in the 13C solid-state NMR signal.

11.
Chem Sci ; 10(35): 8083-8093, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31762968

RESUMO

The reactions of a series of ß-diketiminate stabilised aluminium dihydrides with ruthenium bis(phosphine), palladium bis(phosphine) and palladium cyclopentadienyl complexes is reported. In the case of ruthenium, alane coordination occurs with no evidence for hydrogen loss resulting in the formation of ruthenium complexes with a pseudo-octahedral geometry and cis-relation of phosphine ligands. These new ruthenium complexes have been characterised by multinuclear and variable temperature NMR spectroscopy, IR spectroscopy and single crystal X-ray diffraction. In the case of palladium, a series of structural snapshots of alane dehydrogenation have been isolated and crystallographically characterised. Variation of the palladium precursor and ligand on aluminium allows kinetic control over reactivity and isolation of intermetallic complexes that contain new Pd-Al and Pd-Pd interactions. These complexes differ by the ratio of H : Al (2 : 1, 1.5 : 1 and 1 : 1) with lower hydride content species forming with dihydrogen loss. A combination of X-ray and neutron diffraction studies have been used to interrogate the structures and provide confidence in the assignment of the number and position of hydride ligands. 27Al MAS NMR spectroscopy and calculations (DFT, QTAIM) have been used to gain an understanding of the dehydrogenation processes. The latter provide evidence for dehydrogenation being accompanied by metal-metal bond formation and an increased negative charge on Al due to the covalency of the new metal-metal bonds. To the best of our knowledge, we present the first structural information for intermediate species in alane dehydrogenation including a rare neutron diffraction study of a palladium-aluminium hydride complex. Furthermore, as part of these studies we have obtained the first SS 27Al NMR data on an aluminium(i) complex. Our findings are relevant to hydrogen storage, materials chemistry and catalysis.

12.
Inorg Chem ; 58(24): 16372-16378, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31747261

RESUMO

A proximity enforcing diarylsilane ligand is reported, which gives rise to unusual Si-H···M interactions with the d10 metal ions Cu+ and Ag+ upon complexation. These interactions are studied in detail both experimentally and computationally and can be classified to be weakly agostic in nature for the Si-H···Cu interaction. The Si-H···Ag interaction has more signatures of an electrostatic contact.

13.
Nature ; 574(7778): 390-393, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597960

RESUMO

Transition-metal complexes are widely used in the physical and biological sciences. They have essential roles in catalysis, synthesis, materials science, photophysics and bioinorganic chemistry. Our understanding of transition-metal complexes originates from Alfred Werner's realization that their three-dimensional shape influences their properties and reactivity1, and the intrinsic link between shape and electronic structure is now firmly underpinned by molecular-orbital theory2-5. Despite more than a century of advances in this field, the geometries of transition-metal complexes remain limited to a few well-understood examples. The archetypal geometries of six-coordinate transition metals are octahedral and trigonal prismatic, and although deviations from ideal bond angles and bond lengths are frequent6, alternative parent geometries are extremely rare7. The hexagonal planar coordination environment is known, but it is restricted to condensed metallic phases8, the hexagonal pores of coordination polymers9, or clusters that contain more than one transition metal in close proximity10,11. Such a geometry had been considered12,13 for [Ni(PtBu)6]; however, an analysis of the molecular orbitals suggested that this complex is best described as a 16-electron species with a trigonal planar geometry14. Here we report the isolation and structural characterization of a simple coordination complex in which six ligands form bonds with a central transition metal in a hexagonal planar arrangement. The structure contains a central palladium atom surrounded by three hydride and three magnesium-based ligands. This finding has the potential to introduce additional design principles for transition-metal complexes, with implications for several scientific fields.


Assuntos
Complexos de Coordenação/química , Metais/química , Complexos de Coordenação/isolamento & purificação , Ciência dos Materiais , Conformação Molecular , Elementos de Transição/química
14.
J Phys Chem Lett ; 10(22): 6973-6982, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31633355

RESUMO

The coupling of the crystallographic refinement technique Hirshfeld atom refinement (HAR) with the recently constructed libraries of extremely localized molecular orbitals (ELMOs) gives rise to the new quantum-crystallographic method HAR-ELMO. This method is significantly faster than HAR but as accurate and precise, especially concerning the free refinement of hydrogen atoms from X-ray diffraction data, so that the first fully quantum-crystallographic refinement of a protein is presented here. However, the promise of HAR-ELMO exceeds large molecules and protein crystallography. In fact, it also renders possible electron-density investigations of heavy elements in small molecules and facilitates the detection and isolation of systematic errors from physical effects.

15.
Angew Chem Int Ed Engl ; 58(30): 10255-10259, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31136063

RESUMO

The observation of an unusual crystal habit in the common diuretic drug hydrochlorothiazide (HCT), and identification of its subtle conformational chirality, has stimulated a detailed investigation of its crystalline forms. Enantiomeric conformers of HCT resolve into an unusual structure of conjoined enantiomorphic twin crystals comprising enantiopure domains of opposite chirality. The purity of the domains and the chiral molecular conformation are confirmed by spatially revolved synchrotron micro-XRD experiments and neutron diffraction, respectively. Macroscopic inversion twin symmetry observed between the crystal wings suggests a pseudoracemic structure that is not a solid solution or a layered crystal structure, but an unusual structural variant of conglomerates and racemic twins. Computed interaction energies for molecular pairs in the racemic and enantiopure polymorphs of HCT, and the observation of large opposing unit-cell dipole moments for the enantiopure domains in these twin crystals, suggest a plausible crystal nucleation mechanism for this unusual crystal habit.

16.
J Am Chem Soc ; 141(9): 3965-3976, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30761898

RESUMO

High-resolution synchrotron and neutron single-crystal diffraction data of 18-crown-6/(pentakis)urea measured at 30 K are combined, with the aim of better appreciating the electrostatics associated with intermolecular interactions in condensed matter. With two 18-crown-6 molecules and five different urea molecules in the crystal, this represents the most ambitious combined X-ray/synchrotron and neutron experimental charge density analysis to date on a cocrystal or host-guest system incorporating such a large number of unique molecules. The dipole moments of the five urea guest molecules in the crystal are enhanced considerably compared to values determined for isolated molecules, and 2D maps of the electrostatic potential and electric field show clearly how the urea molecules are oriented with dipole moments aligned along the electric field exerted by their molecular neighbors. Experimental electric fields in the range of 10-19 GV m-1, obtained for the five different urea environments, corroborate independent measurements of electric fields in the active sites of enzymes and provide an important experimental reference point for recent discussions focused on electric-field-assisted catalysis.

17.
Dalton Trans ; 48(9): 2953-2958, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30741279

RESUMO

The bis(amidodimethyl)disiloxane ligands [O{SiMe2NR}2]2- (R = 2,6-Me2C6H3 (Ar') and 2,6-iPr2C6H3 (Ar), abbreviated [NONR]2-, are a stable support for Sb(iii) complexes of general formula Sb(NONR)X (X = Cl, H). The compounds are monomeric in the solid-state, with bidentate N,N'-coordination of the [NONR]2- and terminal chloride/hydrogen-ligands. Sb(NONAr')H was analyzed by single-crystal neutron diffraction, giving the first accurate parameters for the Sb-H bond to an antimony(iii) centre.

18.
Nat Commun ; 9(1): 3079, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082681

RESUMO

Boron hydride clusters are an extremely diverse compound class, which are of enormous importance to many areas of chemistry. Despite this, stable aluminium hydride analogues of these species have remained staunchly elusive to synthetic chemists. Here, we report that reductions of an amidinato-aluminium(III) hydride complex with magnesium(I) dimers lead to unprecedented examples of stable aluminium(I) hydride complexes, [(ArNacnac)Mg]2[Al6H6(Fiso)2] (ArNacnac = [HC(MeCNAr)2]-, Ar = C6H2Me3-2,4,6 Mes; C6H3Et2-2,6 Dep or C6H3Me2-2,6 Xyl; Fiso = [HC(NDip)2]-, Dip = C6H3Pri2-2,6), which crystallographic and computational studies show to possess near neutral, octahedral hypercloso-hexaalane, Al6H6, cluster cores. The electronically delocalised skeletal bonding in these species is compared to that in the classical borane, [B6H6]2-. Thus, the chemistry of classical polyhedral boranes is extended to stable aluminium hydride clusters for the first time.

20.
Chemistry ; 24(9): 2070-2074, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29337386

RESUMO

We report new structural motifs for Cu nanoclusters that conceptually represent seed crystals for large face-centred cubic (FCC) crystal growth. Kinetically controlled syntheses, high resolution mass spectrometry experiments for determination of the dication formulae and crystallographic characterisation were carried out for [Cu18 H16 (DPPE)6 ][BF4 ][Cl] (DPPE=bis(diphenylphosphino)ethane) and [Cu16 H14 (DPPA)6 ][(BF4 )2 ] (DPPA=bis(diphenylphosphino)amine) polyhydrido nanoclusters, which feature the unprecedented bifrustum and frustum metal-core architecture in metal nanoclusters. The Cu18 nanocluster contains two Cu9 frustum cupolae and the Cu16 nanocluster has one Cu9 frustum cupola and a Cu7 distorted hexagonal-shape base. Gas-phase experiments revealed that both Cu18 H16 and Cu16 H14 cores can spontaneously release H2 upon removal of one bisphosphine capping ligand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...