Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
SLAS Discov ; 27(5): 314-322, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35385793

RESUMO

The solid tumor microenvironment (TME) suppresses immune responses. Three alterations in the TME converge on a pathway triggered by elevated cyclic AMP (cAMP) that suppresses T cell receptor (TCR) signaling. We developed a phenotypic assay to screen for small molecules that interfere with this pathway using TALL-104 human leukemic cytotoxic T lymphocytes pretreated with prostaglandin E2 to elevate cAMP. Beads coated with anti-CD3 antibodies stimulate lytic granule exocytosis, which is detected via binding of an antibody against lysosome associated membrane protein 1 (LAMP-1) measured with flow cytometry. Confirming that the assay can find compounds with desired activity, treating cells with a phorbol ester restores exocytosis. The assay behaves well in 96-well format and we screened a collection of compounds expected to have effects on epigenetic regulatory proteins. Compounds in this collection affected lytic granule exocytosis after 24-hour treatment, but none prevented cAMP from suppressing lytic granule exocytosis. We used a fully automated 384-well version of the assay to screen the Prestwick Compound Library but obtained no confirmed hits. Analyzing this assay's performance reveals two points of interest. First, cytometry offers multiple ways to quantify signals. Z' was higher using percent positive cells than mean fluorescence because the relationship between the two measures saturates, but using percent positive could make it harder to find hits in some assays. Second, variance was higher in positive controls than in negative controls in this assay, which degrades assay performance less than if variance was higher in negative controls.


Assuntos
AMP Cíclico , Linfócitos T Citotóxicos , AMP Cíclico/metabolismo , Exocitose , Citometria de Fluxo , Humanos , Transdução de Sinais
3.
SLAS Discov ; 23(7): 751-760, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29842834

RESUMO

Classical therapeutic regimens are subject to toxicity, low efficacy, and/or the development of drug resistance. Thus, the discovery of synergistic drug combinations would permit treatment with lower, tolerable dosages of each agent and restored sensitivity. We describe the development and use of the SynScreen software application, which allows for visual and mathematical determinations of compound concentrations that produce super-additive effects. This software uses nonlinear regression fits of dose responses to determine synergism by the Bliss independence and Loewe additivity analysis models. We demonstrate the utility of SynScreen with data analysis from in vitro high-throughput flow cytometry (HTFC) combination screens with repurposed drugs and multiplexed synergy analysis of multiple biologic parameters in parallel. The applicability of SynScreen was confirmed by testing open-source data sets used in published drug combination literature. A key benefit of SynScreen for high-throughput drug combination screening is that observed measurements are graphically depicted in comparison with a three-dimensional surface that represents the theoretical responses at which Bliss additivity would occur. These images and summary tables for the calculated drug interactions are automatically exported. This allows for substantial data sets to be visually assessed, expediting the quick identification of efficacious drug combinations and thereby facilitating the design of confirmatory studies and clinical trials.


Assuntos
Descoberta de Drogas/métodos , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Software , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Reprodutibilidade dos Testes
4.
ACS Chem Biol ; 13(6): 1514-1524, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746086

RESUMO

Ras and Ras-related small GTPases are key regulators of diverse cellular functions that impact cell growth, survival, motility, morphogenesis, and differentiation. They are important targets for studies of disease mechanisms as well as drug discovery. Here, we report the characterization of small molecule agonists of one or more of six Rho, Rab, and Ras family GTPases that were first identified through flow cytometry-based, multiplexed high-throughput screening of 200000 compounds. The activators were categorized into three distinct chemical families that are represented by three lead compounds having the highest activity. Virtual screening predicted additional compounds with potential GTPase activating properties. Secondary dose-response assays performed on compounds identified through these screens confirmed agonist activity of 43 compounds. While the lead and second most active small molecules acted as pan activators of multiple GTPase subfamilies, others showed partial selectivity for Ras and Rab proteins. The compounds did not stimulate nucleotide exchange by guanine nucleotide exchange factors and did not protect against GAP-stimulated GTP hydrolysis. The activating properties were caused by a reversible stabilization of the GTP-bound state and prolonged effector protein interactions. Notably, these compounds were active both in vitro and in cell-based assays, and small molecule-mediated changes in Rho GTPase activities were directly coupled to measurable changes in cytoskeletal rearrangements that dictate cell morphology.


Assuntos
Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas rho de Ligação ao GTP/agonistas , Actinas/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Ensaios Enzimáticos , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Ratos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Células Swiss 3T3
5.
SLAS Discov ; 23(7): 634-645, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29608398

RESUMO

Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), which infects more than 200,000 people worldwide. Sin Nombre virus (SNV) and Andes virus (ANDV) cause the most severe form of HCPS, with case fatality ratios of 30%-40%. There are no specific therapies or vaccines for SNV. Using high-throughput flow cytometry, we screened the Prestwick Chemical Library for small-molecule inhibitors of the binding interaction between UV-inactivated and fluorescently labeled SNVR18 particles, and decay-accelerating factor (DAF) expressed on Tanoue B cells. Eight confirmed hit compounds from the primary screen were investigated further in secondary screens that included infection inhibition, cytotoxicity, and probe interference. Antimycin emerged as a bona fide hit compound that inhibited cellular infection of the major HCPS (SNV)- and HCPS (Hantaan)-causing viruses. Confirming our assay's ability to detect active compounds, orthogonal testing of the hit compound showed that antimycin binds directly to the virus particle and blocks recapitulation of physiologic integrin activation caused by SNV binding to the integrin PSI domain.


Assuntos
Antivirais/farmacologia , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Orthohantavírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Citometria de Fluxo/métodos , Orthohantavírus/fisiologia , Infecções por Hantavirus/tratamento farmacológico , Infecções por Hantavirus/virologia , Humanos , Modelos Biológicos , Reprodutibilidade dos Testes , Células Vero
6.
SLAS Discov ; 23(7): 624-633, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29232168

RESUMO

DNA double-strand breaks (DSBs) are repaired primarily by homologous recombination (HR) or nonhomologous end joining (NHEJ). Compounds that modulate HR have shown promise as cancer therapeutics. The V(D)J recombination reaction, which assembles antigen receptor genes in lymphocytes, is initiated by the introduction of DNA DSBs at two recombining gene segments by the RAG endonuclease, followed by the NHEJ-mediated repair of these DSBs. Here, using HyperCyt automated flow cytometry, we develop a robust high-throughput screening (HTS) assay for NHEJ that utilizes engineered pre-B-cell lines where the V(D)J recombination reaction can be induced and monitored at a single-cell level. This approach, novel in processing four 384-well plates at a time in parallel, was used to screen the National Cancer Institute NeXT library to identify compounds that inhibit V(D)J recombination and NHEJ. Assessment of cell light scattering characteristics at the primary HTS stage (83,536 compounds) enabled elimination of 60% of apparent hits as false positives. Although all the active compounds that we identified had an inhibitory effect on RAG cleavage, we have established this as an approach that could identify compounds that inhibit RAG cleavage or NHEJ using new chemical libraries.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Citometria de Fluxo , Recombinação Homóloga , Humanos , Estrutura Molecular , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Recombinação V(D)J
7.
Anal Chem ; 89(18): 9967-9975, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28823146

RESUMO

Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 µL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.


Assuntos
Acústica , Separação Celular , Eritrócitos/citologia , Citometria de Fluxo , Células Neoplásicas Circulantes/patologia , Citometria de Fluxo/instrumentação , Fluorescência , Humanos , Lasers , Fenômenos Ópticos , Tamanho da Partícula , Propriedades de Superfície
8.
J Biomol Screen ; 20(6): 689-707, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25805180

RESUMO

Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens of thousands of cells per second and more than five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, "sip-and-spit" sampling technology has restricted it to low-sample-throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens of thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multiparameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage, and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry, and parallel sample processing promise dramatically expanded single-cell profiling capabilities to bolster systems-level approaches to drug discovery.


Assuntos
Descoberta de Drogas/métodos , Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Fenótipo , Bibliotecas de Moléculas Pequenas
9.
J Biomol Screen ; 20(3): 359-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25381253

RESUMO

We screened the National Institutes of Health's Molecular Libraries Small Molecule Repository for inhibitors of cytotoxic T lymphocyte (CTL) lytic granule exocytosis by measuring binding of an antibody in the extracellular solution to a lysosomal membrane protein (LAMP-1) that is transferred to the plasma membrane by exocytosis. We used TALL-104 human leukemic CTLs stimulated with soluble chemicals. Using high-throughput cluster cytometry to screen 364,202 compounds in a 1536-well plate format, we identified 2404 initial hits: 161 were confirmed on retesting, and dose-response measurements were performed. Seventy-five of those compounds were obtained, and 48 were confirmed active. Experiments were conducted to determine the molecular mechanism of action (MMOA) of the active compounds. Fifteen blocked increases in intracellular calcium >50%. Seven blocked phosphorylation of extracellular signal-regulated kinase (ERK) by upstream mitogen-activated protein kinase kinases >50%. One completely blocked the activity of the calcium-dependent phosphatase calcineurin. None blocked ERK catalytic activity. Eight blocked more than one pathway. For 8 compounds, we were unable to determine an MMOA. The activity of 1 of these compounds was confirmed from powder resupply. We conclude that a screen based on antibody binding to CTLs is a good means of identifying novel candidate immunosuppressants with either known or unknown MMOAs.


Assuntos
Exocitose/efeitos dos fármacos , Exocitose/imunologia , Ensaios de Triagem em Larga Escala , Imunossupressores/farmacologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Calcineurina/metabolismo , Cálcio/metabolismo , Catálise , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Fosforilação , Proteína Quinase C/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Linfócitos T Citotóxicos/metabolismo
10.
PLoS Pathog ; 10(6): e1004174, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945495

RESUMO

Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development.


Assuntos
Antibacterianos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Imunidade Inata/efeitos dos fármacos , Quinazolinonas/uso terapêutico , Percepção de Quorum/efeitos dos fármacos , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Triazóis/uso terapêutico , Animais , Antibacterianos/efeitos adversos , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Transformada , Descoberta de Drogas , Genes Reporter/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos Pelados , Camundongos Knockout , Conformação Molecular , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/efeitos adversos , Mutação , Fagocitose/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Quinazolinonas/efeitos adversos , Quinazolinonas/química , Quinazolinonas/farmacologia , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/imunologia , Staphylococcus epidermidis/fisiologia , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Triazóis/efeitos adversos , Triazóis/química , Triazóis/farmacologia
11.
PLoS One ; 9(5): e96761, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24804769

RESUMO

Stroke is a leading cause of death and disability and treatment options are limited. A promising approach to accelerate the development of new therapeutics is the use of high-throughput screening of chemical libraries. Using a cell-based high-throughput oxygen-glucose deprivation (OGD) model, we evaluated 1,200 small molecules for repurposed application in stroke therapy. Isoxsuprine hydrochloride was identified as a potent neuroprotective compound in primary neurons exposed to OGD. Isoxsuprine, a ß2-adrenergic agonist and NR2B subtype-selective N-methyl-D-aspartate (NMDA) receptor antagonist, demonstrated no loss of efficacy when administered up to an hour after reoxygenation in an in vitro stroke model. In an animal model of transient focal ischemia, isoxsuprine significantly reduced infarct volume compared to vehicle (137 ± 18 mm3 versus 279 ± 25 mm3, p < 0.001). Isoxsuprine, a peripheral vasodilator, was FDA approved for the treatment of cerebrovascular insufficiency and peripheral vascular disease. Our demonstration of the significant and novel neuroprotective action of isoxsuprine hydrochloride in an in vivo stroke model and its history of human use suggest that isoxsuprine may be an ideal candidate for further investigation as a potential stroke therapeutic.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isoxsuprina/uso terapêutico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Modelos Animais de Doenças , Isoxsuprina/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley
12.
Comb Chem High Throughput Screen ; 17(3): 256-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24409953

RESUMO

The University of New Mexico Center for Molecular Discovery (UNMCMD) is an academic research center that specializes in discovery using high throughput flow cytometry (HTFC) integrated with virtual screening, as well as knowledge mining and drug informatics. With a primary focus on identifying small molecules that can be used as chemical probes and as leads for drug discovery, it is a central core resource for research and translational activities at UNM that supports implementation and management of funded screening projects as well as "up-front" services such as consulting for project design and implementation, assistance in assay development and generation of preliminary data for pilot projects in support of competitive grant applications. The HTFC platform in current use represents advanced, proprietary technology developed at UNM that is now routinely capable of processing bioassays arrayed in 96-, 384- and 1536-well formats at throughputs of 60,000 or more wells per day. Key programs at UNMCMD include screening of research targets submitted by the international community through NIH's Molecular Libraries Program; a multi-year effort involving translational partnerships at UNM directed towards drug repurposing - identifying new uses for clinically approved drugs; and a recently established personalized medicine initiative for advancing cancer therapy by the application of "smart" oncology drugs in selected patients based on response patterns of their cancer cells in vitro. UNMCMD discoveries, innovation, and translation have contributed to a wealth of inventions, patents, licenses and publications, as well as startup companies, clinical trials and a multiplicity of domestic and international collaborative partnerships to further the research enterprise.


Assuntos
Descoberta de Drogas , Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Universidades/organização & administração , Alergia e Imunologia/organização & administração , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/imunologia , Reposicionamento de Medicamentos , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Neoplasias/tratamento farmacológico , New Mexico , Medicina de Precisão , Pesquisa Translacional Biomédica , Interface Usuário-Computador , Fluxo de Trabalho
13.
Molecules ; 18(6): 6408-24, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23722730

RESUMO

In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Modelos Teóricos , Biblioteca de Peptídeos , Receptores de Formil Peptídeo/antagonistas & inibidores , Concentração Inibidora 50 , Ligantes , Peptídeos/química , Peptídeos/farmacologia
14.
Mol Pharmacol ; 84(3): 314-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23788657

RESUMO

The formylpeptide receptor (FPR1) and formylpeptide-like 1 receptor (FPR2) are G protein-coupled receptors that are linked to acute inflammatory responses, malignant glioma stem cell metastasis, and chronic inflammation. Although several N-formyl peptides are known to bind to these receptors, more selective small-molecule, high-affinity ligands are needed for a better understanding of the physiologic roles played by these receptors. High-throughput assays using mixture-based combinatorial libraries represent a unique, highly efficient approach for rapid data acquisition and ligand identification. We report the superiority of this approach in the context of the simultaneous screening of a diverse set of mixture-based small-molecule libraries. We used a single cross-reactive peptide ligand for a duplex flow cytometric screen of FPR1 and FPR2 in color-coded cell lines. Screening 37 different mixture-based combinatorial libraries totaling more than five million small molecules (contained in 5,261 mixture samples) resulted in seven libraries that significantly inhibited activity at the receptors. Using positional scanning deconvolution, selective high-affinity (low nM K(i)) individual compounds were identified from two separate libraries, namely, pyrrolidine bis-diketopiperazine and polyphenyl urea. The most active individual compounds were characterized for their functional activities as agonists or antagonists with the most potent FPR1 agonist and FPR2 antagonist identified to date with an EC50 of 131 nM (4 nM K(i)) and an IC50 of 81 nM (1 nM K(i)), respectively, in intracellular Ca²âº response determinations. Comparative analyses of other previous screening approaches clearly illustrate the efficiency of identifying receptor selective, individual compounds from mixture-based combinatorial libraries.


Assuntos
Receptores de Formil Peptídeo/agonistas , Receptores de Formil Peptídeo/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Aminoácidos/química , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Dicetopiperazinas/síntese química , Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Relação Dose-Resposta a Droga , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos/química , Peptidomiméticos/química , Pirrolidinas/síntese química , Pirrolidinas/química , Pirrolidinas/farmacologia , Ratos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Estereoisomerismo
15.
J Chem Inf Model ; 53(6): 1475-85, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23705689

RESUMO

We present a general approach to describe the structure-activity relationships (SAR) of combinatorial data sets with activity for two biological endpoints with emphasis on the rapid identification of substitutions that have a large impact on activity and selectivity. The approach uses dual-activity difference (DAD) maps that represent a visual and quantitative analysis of all pairwise comparisons of one, two, or more substitutions around a molecular template. Scanning the SAR of data sets using DAD maps allows the visual and quantitative identification of activity switches defined as specific substitutions that have an opposite effect on the activity of the compounds against two targets. The approach also rapidly identifies single- and double-target R-cliffs, i.e., compounds where a single or double substitution around the central scaffold dramatically modifies the activity for one or two targets, respectively. The approach introduced in this report can be applied to any analogue series with two biological activity endpoints. To illustrate the approach, we discuss the SAR of 106 pyrrolidine bis-diketopiperazines tested against two formylpeptide receptors obtained from positional scanning deconvolution methods of mixture-based libraries.


Assuntos
Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Receptores de Formil Peptídeo/metabolismo , Relação Estrutura-Atividade , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Humanos , Pirrolidinas/química , Pirrolidinas/farmacologia
16.
Anal Biochem ; 437(1): 77-87, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23470221

RESUMO

ATP binding cassette (ABC) transmembrane efflux pumps such as P-glycoprotein (ABCB1), multidrug resistance protein 1 (ABCC1), and breast cancer resistance protein (ABCG2) play an important role in anticancer drug resistance. A large number of structurally and functionally diverse compounds act as substrates or modulators of these pumps. In vitro assessment of the affinity of drug candidates for multidrug resistance proteins is central to predict in vivo pharmacokinetics and drug-drug interactions. The objective of this study was to identify and characterize new substrates for these transporters. As part of a collaborative project with Life Technologies, 102 fluorescent probes were investigated in a flow cytometric screen of ABC transporters. The primary screen compared substrate efflux activity in parental cell lines with their corresponding highly expressing resistant counterparts. The fluorescent compound library included a range of excitation/emission profiles and required dual laser excitation as well as multiple fluorescence detection channels. A total of 31 substrates with active efflux in one or more pumps and practical fluorescence response ranges were identified and tested for interaction with eight known inhibitors. This screening approach provides an efficient tool for identification and characterization of new fluorescent substrates for ABCB1, ABCC1, and ABCG2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Citometria de Fluxo/métodos , Corantes Fluorescentes/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Linhagem Celular , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica
17.
Anal Chem ; 85(4): 2208-15, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23331264

RESUMO

This report describes the development of elastomeric capture microparticles (ECµPs) and their use with acoustophoretic separation to perform microparticle assays via flow cytometry.We have developed simple methods to form ECµPs by cross-linking droplets of common commercially available silicone precursors in suspension followed by surface functionalization with biomolecular recognition reagents. The ECµPs are compressible particles that exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum, or diluted blood. In this study, these particles have been functionalized with antibodies to bind prostate specific antigen and immunoglobulin (IgG). Specific separation of the ECµPs from blood cells is achieved by flowing them through a microfluidic acoustophoretic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast ECµPs at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast (ECµPs) and positive contrast particles (cells). Separated ECµPs were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers in a number of biological sample types.


Assuntos
Citometria de Fluxo/métodos , Microesferas , Polímeros/química , Antígeno Prostático Específico/análise , Animais , Anticorpos Monoclonais/imunologia , Biomarcadores/análise , Biomarcadores/sangue , Dimetilpolisiloxanos/química , Elastômeros , Humanos , Imunoglobulina G/sangue , Camundongos , Técnicas Analíticas Microfluídicas , Polímeros/síntese química , Suínos
18.
J Biomol Screen ; 18(1): 26-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22923785

RESUMO

Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)-driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cytometry A ; 81(5): 419-29, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438314

RESUMO

Flow cytometry specializes in high-content measurements of cells and particles in suspension. Having long excelled in analytical throughput of single cells and particles, only recently with the advent of HyperCyt sampling technology, flow cytometry's multiexperiment throughput has begun to approach the point of practicality for efficiently analyzing hundreds-of-thousands of samples, the realm of high-throughput screening (HTS). To extend performance and automation compatibility, we built a HyperCyt-linked Cluster Cytometer platform, a network of flow cytometers for analyzing samples displayed in high-density, 1,536-well plate format. To assess the performance, we used cell- and microsphere-based HTS assays that had been well characterized in the previous studies. Experiments addressed important technical issues: challenges of small wells (assay volumes 10 µL or less, reagent mixing, cell and particle suspension), detecting and correcting for differences in performance of individual flow cytometers, and the ability to reanalyze a plate in the event of problems encountered during the primary analysis. Boosting sample throughput an additional fourfold, this platform is uniquely positioned to synergize with expanding suspension array and cell barcoding technologies in which as many as 100 experiments are performed in a single well or sample. As high-performance flow cytometers shrink in cost and size, cluster cytometry promises to become a practical, productive approach for HTS, and other large-scale investigations of biological complexity.


Assuntos
Citometria de Fluxo/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Desenho de Equipamento , Citometria de Fluxo/métodos , Software
20.
ACS Chem Biol ; 7(4): 715-22, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22260433

RESUMO

TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 µM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.


Assuntos
Inibidores de Proteínas Quinases/análise , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Citometria de Fluxo , Proteínas de Fluorescência Verde , Humanos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...