Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(36): 13631-13635, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36001015

RESUMO

The solution structure of 1.0 M Uranyl Chloride has been determined by the EPSR modelling of a combination of neutron scattering and EXAFS data. The experimental data show an equilibrium in solution between [UO2(H2O)5]2+ and [UO2Cl(H2O)4]+ with a stability constant of 0.23 ± 0.03 mol-1 dm-3. A much smaller fraction of the neutral [UO2Cl2(H2O)3] ion is also observed. The data also show, for the first time in solution, that the uranyl ion is a very poor hydrogen bond acceptor, but the coordinated waters show enhanced hydrogen bond ability compared to the bulk water.

2.
Dalton Trans ; 48(34): 13057-13063, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31407762

RESUMO

Studtite, [UO2(η2-O2)(H2O)2]·2H2O, and metastudtite, [UO2(η2-O2)(H2O)2], are important phase alterations of UO2 in a spent nuclear fuel repository and have previously been shown to react with Np(v). In this work we extend the study to Am(v) on a tracer scale and show spectroscopic evidence that the Am is incorporated into the structure of studtite as Am(iii). A computational study on the possible mechanisms for the incorporation of Np and Am shows that protonation of the -yl oxygen is the favoured route and the calculated incorporation energies are large and positive. The results suggest that Am is less favoured compared to Np but energetically more favoured to incorporate both actinide ions into metastudtite rather than studtite. Finally, we have shown that once incorporated, Am readily leaches into water but spectroscopic measurements suggest subtle changes in the structure of studtite.

3.
Rapid Commun Mass Spectrom ; 22(5): 677-81, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18257115

RESUMO

We report a fast, sensitive, real-time method to measure monobromamine, monochloramine and dichloramine using selected ion flow tube mass spectrometry (SIFT-MS). Relative rate coefficients and product distributions are reported for the reagent ions H3O+ and O2 +. Rapid reactions with the haloamines were observed with H3O+ and O2 + but no fast reaction was found with NO+. A slow reaction between NO+ and dichloramine was observed. We demonstrate the feasibility of determining these compounds in a single human breath for which the limit of detection is approaching 10 parts per billion (ppb). We also report preliminary measurements of these compounds in the breath of individuals where the concentrations of bromamine and chloramine ranged from 10 to 150 ppb.


Assuntos
Testes Respiratórios/métodos , Brometos/análise , Cloraminas/análise , Espectrometria de Massas/métodos , Biomarcadores/análise , Testes Respiratórios/instrumentação , Expiração , Estudos de Viabilidade , Humanos , Espectrometria de Massas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA