Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(15): 3657-3680, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33982340

RESUMO

Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.


Assuntos
Ecossistema , Floresta Úmida , África , Biomassa , Florestas , Raízes de Plantas , Solo , América do Sul , Árvores , Clima Tropical
2.
Science ; 370(6521): 1219-1222, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32972990

RESUMO

Afrotropical forests host much of the world's remaining megafauna, although these animals are confined to areas where direct human influences are low. We used a rare long-term dataset of tree reproduction and a photographic database of forest elephants to assess food availability and body condition of an emblematic megafauna species at Lopé National Park, Gabon. Our analysis reveals an 81% decline in fruiting over a 32-year period (1986-2018) and an 11% decline in body condition of fruit-dependent forest elephants from 2008 to 2018. Fruit famine in one of the last strongholds for African forest elephants should raise concern about the ability of this species and other fruit-dependent megafauna to persist in the long term, with potential consequences for broader ecosystem and biosphere functioning.


Assuntos
Elefantes , Fome Epidêmica , Frutas/crescimento & desenvolvimento , África Central , Animais , Conjuntos de Dados como Assunto , Florestas , Gabão , Parques Recreativos , Reprodução , Árvores/crescimento & desenvolvimento
3.
PeerJ ; 8: e8732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328343

RESUMO

BACKGROUND: The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However, they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2,000 mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of persistent cloudiness and inability to ground-truth estimates. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests under future climate scenarios. METHODS: We have the rare opportunity to analyse a 34 year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé National Park, a long-term ecological research site in Gabon, western equatorial Africa. We used (generalized) linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns. RESULTS: Lopé's weather is characterised by a cool, light-deficient, long dry season. Long-term climatic means have changed significantly over the last 34 years, with warming occurring at a rate of +0.25 °C per decade (minimum daily temperature) and drying at a rate of -75 mm per decade (total annual rainfall). Inter-annual climatic variability at Lopé is highly influenced by global weather patterns. Sea surface temperatures of the Pacific and Atlantic oceans have strong coherence with Lopé temperature and rainfall on multi-annual scales. CONCLUSIONS: The Lopé long-term weather record has not previously been made public and is of high value in such a data poor region. Our results support regional analyses of climatic seasonality, long-term warming and the influences of the oceans on temperature and rainfall variability. However, warming has occurred more rapidly than the regional products suggest and while there remains much uncertainty in the wider region, rainfall has declined over the last three decades at Lopé. The association between rainfall and the Atlantic cold tongue at Lopé lends some support for the 'dry' models of climate change for the region. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of dry season clouds to ocean temperatures and the viability of humid evergreen forests in this dry region should the clouds disappear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...