Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 132270, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734347

RESUMO

Methylcellulose, a prominent polysaccharide prevalent in the food sector, was considered to fabricate the active films with glutaraldehyde as a crosslinker and Noni (Morinda citrifolia) Leaf Extract (NLE) as an active agent. FTIR analysis confirms the intermolecular -OH bonding, and SEM micrograms demonstrate methylcellulose active films' homogeneous, dense morphologic appearance. Due to the crosslinking effect of glutaraldehyde and noni leaf extract, tensile strength (41.83 ±â€¯0.134 MPa) and crystallinity (62.91 %) of methylcellulose films were improved. Methylcellulose active films suppress water and moisture uptake at various relative humidities. The inhibition capability against foodborne pathogens and the excellent antioxidant activity [DPPH (93.191 ±â€¯1.384 %) and ABTS (90.523 ±â€¯1.412 %)] of NLE incorporation suggested that food packed in methylcellulose active films were effective against pathogenic and oxidative attacks. During preservation, to ensure the apple slices' nutritional values, they are covered with physiochemically enhanced methylcellulose active films for up to 120 h. The minimum reduction in vitamin C, reducing sugar content, percentage weight loss, pH, and total phenolic content of apple slices preserved in MGN active films at room temperature suggests it is an affordable and efficient replacement to traditional single-use plastic packaging in the cut fruit industry.

2.
Int J Biol Macromol ; 253(Pt 7): 127552, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865373

RESUMO

In the present study, cationic starch (CS)/chitosan (CH) incorporated with tannic acid (TA)(CSCT) eco-friendly films were prepared by employing an inexpensive solvent casting technique. Influence of TA on the physicochemical and antimicrobial properties of CS/CH polymer matrix were studied. The FTIR findings and homogeneous, dense SEM micrographs confirms the effective interaction of TA with CS/CH polymer matrix. CSCT-3 active film displayed tensile strength of 26.99±1.91 MPa, which is more substantial than commercially available polyethylene (PE) (12-16 MPa) films. The active films exhibited excellent barrier properties against moisture and water, supported by increased water contact angle values (86.97±0.29°). Overall migration rate of active films was found to be below the permitted limit of 10mg/dm2. The active films showed around 56% of degradation in soil within 15 days. Besides, the active films showed concurring impact against food borne pathogens like E. coli, S. aureus and C. albicans. The CSCT-3 active film presented 90.83% of antioxidant capacity, demonstrating the effective prevention of food oxidation related deterioration. Ladyfinger packaging was inspected to examine the ability of active films as packaging material resulted in effectively resisting deterioration and extending shelf life in comparison with traditional PE packaging.


Assuntos
Quitosana , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos , Amido/farmacologia , Escherichia coli , Staphylococcus aureus , Taninos/farmacologia , Água/farmacologia
3.
Appl Radiat Isot ; 196: 110773, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36921430

RESUMO

The effect of bismuth nitrate pentahydrate (BNP) on the properties and microstructural features of polycarbonate (PC) has been investigated using PALT, XRD, SEM, EDX, TG, ATR-FTIR and tensile mechanical measurements. Positron Annihilation Lifetime Spectroscopy reveals that the ortho-positronium lifetime and its corresponding intensity significantly decrease as the filler level of BNP in PC (in the composite) increases from 0.3 wt% up to 5.0 wt%. This is due to the increasing fraction of positrons that annihilate with the filler particles and also in the interfacial layers of the filler and the host polymer. Fourier Transform Infrared spectra show that there is no significant shift in the IR bands of the composite when compared to those of pure PC, and so there is little molecular level interaction between PC and BNP. The micrographs of SEM revealed a random distribution of filler particles in the composite, and there is the formation of agglomerates of BNP at higher filler levels. There is an increase in the degree of crystallinity of the composite films due to the addition of the crystalline filler, which was confirmed by XRD analysis. Tensile mechanical tests confirmed the improved tensile strength of prepared composites at lower and moderate filler levels, from 0.0 wt % up to 2.5 wt%. The free volume properties of the composite films are correlated with its tensile mechanical properties.

4.
Int J Biol Macromol ; 232: 123499, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36736522

RESUMO

Vanillic acid incorporated chitosan/poly(vinyl alcohol) active films were prepared by employing a cost-effective solvent casting technique. FTIR investigation validated the intermolecular interaction and formation of Schiff's base (C=N) between functional groups of vanillic acid, chitosan, and poly(vinyl alcohol). The addition of vanillic acid resulted in homogenous and dense morphology, as confirmed by SEM micrographs. The tensile strength of active films increased from 32 to 59 MPa as the amount of vanillic acid increased and the obtained values are more significant than reported polyethylene (2231 MPa) and polypropylene (31-38 MPa) films, widely utilized in food packaging. Active film's UV, water, and oxygen barrier properties exhibited excellent results with the incorporation of vanillic acid. Around 40 % of degradation commences within 15 days. Synergistic impact against S. aureus, E. coli, and C. albicans pathogens caused the expansion of the inhibition zone, evidenced by the excellent antimicrobial activity. The highest antioxidant capacity, 73.65 % of CPV-4 active film, proved that active films could prevent the spoilage of food from oxidation. Green chillies packaging was carried out to examine the potential of prepared active films as packaging material results in successfully sustaining carotenoid accumulation and prolonging the shelf life compared to conventional polyethylene (PE) packaging.


Assuntos
Anti-Infecciosos , Quitosana , Álcool de Polivinil/farmacologia , Antioxidantes/farmacologia , Quitosana/farmacologia , Ácido Vanílico/farmacologia , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Embalagem de Alimentos/métodos , Polietilenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...