Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Br J Pharmacol ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679957

RESUMO

BACKGROUND AND PURPOSE: Cancer therapy-related cardiovascular adverse events (CAEs) in presence of comorbidities, are in the spotlight of the cardio-oncology guidelines. Carfilzomib (Cfz), indicated for relapsed/refractory multiple myeloma (MM), presents with serious CAEs. MM is often accompanied with co-existing comorbidities. However, Cfz use in MM patients with cardiometabolic syndrome (CMS) or in heart failure with reduced ejection fraction (HFrEF), is questionable. EXPERIMENTAL APPROACH: ApoE-/- and C57BL6/J male mice received 14 weeks Western Diet (WD) (CMS models). C57BL6/J male mice underwent permanent LAD ligation for 14 days (early-stage HFrEF model). CMS- and HFrEF-burdened mice received Cfz for two consecutive or six alternate days. Daily metformin and atorvastatin administrations were performed additionally to Cfz, as prophylactic interventions. Mice underwent echocardiography, while proteasome activity, biochemical and molecular analyses were conducted. KEY RESULTS: CMS did not exacerbate Cfz left ventricular (LV) dysfunction, whereas Cfz led to metabolic complications in both CMS models. Cfz induced autophagy and Ca2+ homeostasis dysregulation, whereas metformin and atorvastatin prevented Cfz-mediated LV dysfunction and molecular deficits in the CMS-burdened myocardium. Early-stage HFrEF led to depressed LV function and increased protein phosphatase 2A (PP2A) activity. Cfz further increased myocardial PP2A activity, inflammation and Ca2+-cycling dysregulation. Metformin co-administration exerted an anti-inflammatory potential on the myocardium without improving LV function. CONCLUSION AND IMPLICATIONS: CMS and HFrEF seem to exacerbate Cfz-induced CAEs, by presenting metabolism-related hidden toxicity and PP2A-related cardiac inflammation, respectively. Metformin retains its prophylactic potential in the presence of CMS, while mitigating inflammation and Ca2+ signalling dysregulation in the HFrEF myocardium.

2.
Basic Res Cardiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520533

RESUMO

Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab's (Pem's) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem's cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem's cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.

3.
J Med Chem ; 66(22): 15115-15140, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37943012

RESUMO

F1FO-ATP synthase is the mitochondrial complex responsible for ATP production. During myocardial ischemia, it reverses its activity, hydrolyzing ATP and leading to energetic deficit and cardiac injury. We aimed to discover novel inhibitors of ATP hydrolysis, accessing the druggability of the target within ischemia(I)/reperfusion(R) injury. New molecular scaffolds were revealed using ligand-based virtual screening methods. Fifty-five compounds were tested on isolated murine heart mitochondria and H9c2 cells for their inhibitory activity. A pyrazolo[3,4-c]pyridine hit structure was identified and optimized in a hit-to-lead process synthesizing nine novel derivatives. Three derivatives significantly inhibited ATP hydrolysis in vitro, while in vivo, they reduced myocardial infarct size (IS). The novel compound 31 was the most effective in reducing IS, validating that inhibition of F1FO-ATP hydrolytic activity can serve as a target for cardioprotection during ischemia. Further examination of signaling pathways revealed that the cardioprotection mechanism is related to the increased ATP content in the ischemic myocardium and increased phosphorylation of PKA and phospholamban, leading to the reduction of apoptosis.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Hidrólise , Trifosfato de Adenosina/metabolismo , Mitocôndrias Cardíacas/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762269

RESUMO

(1) Carfilzomib (Cfz) is an antineoplastic agent indicated for the treatment of multiple myeloma. However, its beneficial action is attenuated by the occurrence of cardiotoxicity and nephrotoxicity as the most common adverse effects. Presently, there is well-established knowledge on the pathomechanisms related to these side effects; however, the research on the metabolic alterations provoked by the drug is limited. (2) An in vivo simulation of Cfz-induced toxicity was developed in (i) Cfz-treated and (ii) control mice. An RP-HRMS-based protocol and an advanced statistical treatment were used to investigate the impact of Cfz on the non-polar metabolome. (3) The differential analysis classified the Cfz-treated and control mice and resulted in a significant number of identified biomarkers with AUC > 0.9. The drug impaired the biosynthesis and degradation of aromatic amino acids (AAA) and led to alterations of uremic toxins in the renal and urine levels. Furthermore, the renal degradation of tryptophan was affected, inducing its degradation via the kynurenine pathway. (4) The renal levels of metabolites showed impaired excretion and degradation of AAAs. Cfz was, finally, correlated with the biosynthesis of renal dopamine, explaining the biochemical causes of water and ion retention and the increase in systolic pressure.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Metabolômica , Animais , Camundongos , Oligopeptídeos/farmacologia , Aminoácidos Aromáticos , Metaboloma
5.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762537

RESUMO

Acute respiratory distress syndrome (ARDS) is a highly morbid inflammatory lung disease with limited pharmacological interventions. The present study aims to evaluate and compare the potential pulmonoprotective effects of natural prolyl oligopeptidase (POP) inhibitors namely rosmarinic acid (RA), chicoric acid (CA), epigallocatechin-3-gallate (EGCG) and gallic acid (GA), against lipopolysaccharide (LPS)-induced ARDS. Cell viability and expression of pro-inflammatory mediators were measured in RAW264.7 cells and in primary murine lung epithelial and bone marrow cells. Nitric oxide (NO) production was also assessed in unstimulated and LPS-stimulated RAW264.7 cells. For subsequent in vivo experiments, the two natural products (NPs) with the most favorable effects, RA and GA, were selected. Protein, cell content and lipid peroxidation levels in bronchoalveolar lavage fluid (BALF), as well as histopathological changes and respiratory parameters were evaluated in LPS-challenged mice. Expression of key mediators involved in ARDS pathophysiology was detected by Western blotting. RA and GA favorably reduced gene expression of pro-inflammatory mediators in vitro, while GA decreased NO production in macrophages. In LPS-challenged mice, RA and GA co-administration improved respiratory parameters, reduced cell and protein content and malondialdehyde (MDA) levels in BALF, decreased vascular cell adhesion molecule-1 (VCAM-1) and the inducible nitric oxide synthase (iNOS) protein expression, activated anti-apoptotic mechanisms and down-regulated POP in the lung. Conclusively, these synergistic pulmonoprotective effects of RA and GA co-administration could render them a promising prophylactic/therapeutic pharmacological intervention against ARDS.


Assuntos
Produtos Biológicos , Síndrome do Desconforto Respiratório , Animais , Camundongos , Prolil Oligopeptidases , Lipopolissacarídeos/toxicidade , Síndrome do Desconforto Respiratório/tratamento farmacológico , Inibidores Enzimáticos , Ácido Gálico , Mediadores da Inflamação
6.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548062

RESUMO

Despite major advances in acute interventions for myocardial infarction (MI), adverse cardiac remodeling and excess fibrosis after MI causing ischemic heart failure (IHF) remain a leading cause of death worldwide. Here we identify a profibrotic coagulation signaling pathway that can be targeted for improved cardiac function following MI with persistent ischemia. Quantitative phosphoproteomics of cardiac tissue revealed an upregulated mitogen-activated protein kinase (MAPK) pathway in human IHF. Intervention in this pathway with trametinib improves myocardial function and prevents fibrotic remodeling in a murine model of non-reperfused MI. MAPK activation in MI requires myeloid cell signaling of protease-activated receptor 2 linked to the cytoplasmic domain of the coagulation initiator tissue factor (TF). They act upstream of pro-oxidant NOX2 NADPH oxidase, ERK1/2 phosphorylation, and activation of profibrotic TGF-ß1. Specific targeting with the TF inhibitor nematode anticoagulant protein c2 (NAPc2) starting 1 day after established experimental MI averts IHF. Increased TF cytoplasmic domain phosphorylation in circulating monocytes from patients with subacute MI identifies a potential thromboinflammatory biomarker reflective of increased risk for IHF and suitable for patient selection to receive targeted TF inhibition therapy.


Assuntos
Insuficiência Cardíaca , Células Mieloides , Infarto do Miocárdio , Animais , Humanos , Camundongos , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células Mieloides/metabolismo , Infarto do Miocárdio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Ventricular
7.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430599

RESUMO

Myocardial protection against ischemia/reperfusion injury (IRI) is mediated by various ligands, activating different cellular signaling cascades. These include classical cytosolic mediators such as cyclic-GMP (c-GMP), various kinases such as Phosphatydilinositol-3- (PI3K), Protein Kinase B (Akt), Mitogen-Activated-Protein- (MAPK) and AMP-activated (AMPK) kinases, transcription factors such as signal transducer and activator of transcription 3 (STAT3) and bioactive molecules such as vascular endothelial growth factor (VEGF). Most of the aforementioned signaling molecules constitute targets of anticancer therapy; as they are also involved in carcinogenesis, most of the current anti-neoplastic drugs lead to concomitant weakening or even complete abrogation of myocardial cell tolerance to ischemic or oxidative stress. Furthermore, many anti-neoplastic drugs may directly induce cardiotoxicity via their pharmacological effects, or indirectly via their cardiovascular side effects. The combination of direct drug cardiotoxicity, indirect cardiovascular side effects and neutralization of the cardioprotective defense mechanisms of the heart by prolonged cancer treatment may induce long-term ventricular dysfunction, or even clinically manifested heart failure. We present a narrative review of three therapeutic interventions, namely VEGF, proteasome and Immune Checkpoint inhibitors, having opposing effects on the same intracellular signal cascades thereby affecting the heart. Moreover, we herein comment on the current guidelines for managing cardiotoxicity in the clinical setting and on the role of cardiovascular confounders in cardiotoxicity.


Assuntos
Antineoplásicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Miocárdio , Humanos , Cardiotoxicidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/complicações , Miocárdio/patologia , Miócitos Cardíacos , Neoplasias/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Antineoplásicos/efeitos adversos
8.
Molecules ; 27(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432029

RESUMO

BACKGROUND: Carfilzomib (Cfz) is an anti-cancer drug related to cardiorenal adverse events, with cardiovascular and renal complications limiting its clinical use. Despite the important progress concerning the discovery of the underlying causes of Cfz-induced nephrotoxicity, the molecular/biochemical background is still not well clarified. Furthermore, the number of metabolomics-based studies concerning Cfz-induced nephrotoxicity is limited. METHODS: A metabolomics UPLC-HRMS-DIA methodology was applied to three bio-sample types i.e., plasma, kidney, and urine, obtained from two groups of mice, namely (i) Cfz (8 mg Cfz/ kg) and (ii) Control (0.9% NaCl) (n = 6 per group). Statistical analysis, involving univariate and multivariate tools, was applied for biomarker detection. Furthermore, a sub-study was developed, aiming to estimate metabolites' correlation among bio-samples, and to enlighten potential mechanisms. RESULTS: Cfz mostly affects the kidneys and urine metabolome. Fifty-four statistically important metabolites were discovered, and some of them have already been related to renal diseases. Furthermore, the correlations between bio-samples revealed patterns of metabolome alterations due to Cfz. CONCLUSIONS: Cfz causes metabolite retention in kidney and dysregulates (up and down) several metabolites associated with the occurrence of inflammation and oxidative stress.


Assuntos
Metabolômica , Oligopeptídeos , Animais , Camundongos , Rim , Metaboloma , Tocoferóis
9.
Hemasphere ; 6(11): e791, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36285072

RESUMO

Carfilzomib is an irreversible proteasome inhibitor indicated for relapsed/refractory multiple myeloma. Carfilzomib toxicity includes renal adverse effects (RAEs) of obscure pathobiology. Therefore, we investigated the mechanisms of nephrotoxicity developed by Carfilzomib. In a first experimental series, we used our previously established in vivo mouse models of Carfilzomib cardiotoxicity, that incorporated 2 and 4 doses of Carfilzomib, to identify whether Carfilzomib affects renal pathways. Hematology and biochemical analyses were performed, while kidneys underwent histological and molecular analyses. In a second and third experimental series, the 4 doses protocol was repeated for 24 hours urine collection and proteomic/metabolomic analyses. To test an experimental intervention, primary murine collecting duct tubular epithelial cells were treated with Carfilzomib and/or Eplerenone and Metformin. Finally, Eplerenone was orally co-administered with Carfilzomib daily (165 mg/kg) in the 4 doses protocol. We additionally used material from 7 patients to validate our findings and patients underwent biochemical analysis and assessment of renal mineralocorticoid receptor (MR) axis activation. In vivo screening showed that Carfilzomib-induced renal histological deficits and increased serum creatinine, urea, NGAL levels, and proteinuria only in the 4 doses protocol. Carfilzomib decreased diuresis, altered renal metabolism, and activated MR axis. This was consistent with the cytotoxicity found in primary murine collecting duct tubular epithelial cells, whereas Carfilzomib + Eplerenone co-administration abrogated Carfilzomib-related nephrotoxic effects in vitro and in vivo. Renal SGK-1, a marker of MR activation, increased in patients with Carfilzomib-related RAEs. Conclusively, Carfilzomib-induced renal MR/SGK-1 activation orchestrates RAEs and water retention both in vivo and in the clinical setting. MR blockade emerges as a potential therapeutic approach against Carfilzomib-related nephrotoxicity.

10.
Healthcare (Basel) ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36011166

RESUMO

Hypoglycemia has been associated with complications from the vasculature. The contributing effects of oxidative stress (OS) on these actions have not been sufficiently studied, especially in daily, routine clinical practice. We examined the association of hypoglycemia encountered in daily clinical practice with biomarkers of OS and endogenous antioxidant activity in persons with diabetes [type 1 (T1D) or type 2 (T2D)], as well as individuals without diabetes, with a history of hypoglycemia. Several biomarkers of OS (MDA, ADMA, ox-LDL, 3-NT, protein carbonyls, 4-HNE, TBARS) and antioxidant capacity (TAC, superoxide scavenging capacity, hydroxyl radical scavenging capacity, reducing power, ABTS) were measured. Blood was drawn at the time of hypoglycemia detection and under euglycemic conditions on a different day. A total of 31 participants (mean age [±SD] 52.2 ± 21.1 years, 45.2% males) were included in the study. There were 14 (45.2%) persons with T2D, 12 (38.7%) with T1D, and 5 (16.1%) without diabetes. We found no differences in the examined biomarkers. Only TBARS, a biomarker of lipid peroxidation, showed lower values during hypoglycemia (p = 0.005). This finding needs confirmation in more extensive studies, given that MDA, another biomarker of lipid peroxidation, was not affected. Our study suggests that hypoglycemia encountered in daily clinical practice does not affect OS.

11.
Basic Res Cardiol ; 117(1): 27, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581445

RESUMO

Major clinical trials with sodium glucose co-transporter-2 inhibitors (SGLT-2i) exhibit protective effects against heart failure events, whereas inconsistencies regarding the cardiovascular death outcomes are observed. Therefore, we aimed to compare the selective SGLT-2i empagliflozin (EMPA), dapagliflozin (DAPA) and ertugliflozin (ERTU) in terms of infarct size (IS) reduction and to reveal the cardioprotective mechanism in healthy non-diabetic mice. C57BL/6 mice randomly received vehicle, EMPA (10 mg/kg/day) and DAPA or ERTU orally at the stoichiometrically equivalent dose (SED) for 7 days. 24 h-glucose urinary excretion was determined to verify SGLT-2 inhibition. IS of the region at risk was measured after 30 min ischemia (I), and 120 min reperfusion (R). In a second series, the ischemic myocardium was collected (10th min of R) for shotgun proteomics and evaluation of the cardioprotective signaling. In a third series, we evaluated the oxidative phosphorylation capacity (OXPHOS) and the mitochondrial fatty acid oxidation capacity by measuring the respiratory rates. Finally, Stattic, the STAT-3 inhibitor and wortmannin were administered in both EMPA and DAPA groups to establish causal relationships in the mechanism of protection. EMPA, DAPA and ERTU at the SED led to similar SGLT-2 inhibition as inferred by the significant increase in glucose excretion. EMPA and DAPA but not ERTU reduced IS. EMPA preserved mitochondrial functionality in complex I&II linked oxidative phosphorylation. EMPA and DAPA treatment led to NF-kB, RISK, STAT-3 activation and the downstream apoptosis reduction coinciding with IS reduction. Stattic and wortmannin attenuated the cardioprotection afforded by EMPA and DAPA. Among several upstream mediators, fibroblast growth factor-2 (FGF-2) and caveolin-3 were increased by EMPA and DAPA treatment. ERTU reduced IS only when given at the double dose of the SED (20 mg/kg/day). Short-term EMPA and DAPA, but not ERTU administration at the SED reduce IS in healthy non-diabetic mice. Cardioprotection is not correlated to SGLT-2 inhibition, is STAT-3 and PI3K dependent and associated with increased FGF-2 and Cav-3 expression.


Assuntos
Diabetes Mellitus Tipo 2 , Traumatismo por Reperfusão Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos , Glucose , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Wortmanina
12.
Eur Heart J ; 43(6): 488-500, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132336

RESUMO

AIMS: Assessment of endothelial function in humans by measuring flow-mediated dilation (FMD) risk-stratifies individuals with established cardiovascular disease, whereas its predictive value is limited in primary prevention. We therefore aimed to establish and evaluate novel markers of FMD at the population level. METHODS AND RESULTS: In order to identify novel targets that were negatively correlated with FMD and investigate their contribution to vascular function, we performed a genome-wide association study (GWAS) of 4175 participants of the population based Gutenberg Health Study. Subsequently, conditional knockout mouse models deleting the gene of interest were generated and characterized. GWAS analysis revealed that single-nucleotide polymorphisms (SNPs) in the tubulin-folding cofactor E (TBCE) gene were negatively correlated with endothelial function and TBCE expression. Vascular smooth muscle cell (VSMC)-targeted TBCE deficiency was associated with endothelial dysfunction, aortic wall hypertrophy, and endoplasmic reticulum (ER) stress-mediated VSMC hyperproliferation in mice, paralleled by calnexin up-regulation and exacerbated by the blood pressure hormone angiotensin II. Treating SMMHC-ERT2-Cre+/-TBCEfl/fl mice with the ER stress modulator tauroursodeoxycholic acid amplified Raptor/Beclin-1-dependent autophagy and reversed vascular dysfunction. CONCLUSION: TBCE and tubulin homeostasis seem to be novel predictors of vascular function and offer a new drug target to ameliorate ER stress-dependent vascular dysfunction.


Assuntos
Estresse do Retículo Endoplasmático , Tubulina (Proteína) , Animais , Aorta , Endotélio Vascular/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Knockout , Tubulina (Proteína)/metabolismo
13.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681615

RESUMO

BACKGROUND: Carfilzomib is a first-line proteasome inhibitor indicated for relapsed/refractory multiple myeloma (MM), with its clinical use being hampered by cardiotoxic phenomena. We have previously established a translational model of carfilzomib cardiotoxicity in young adult mice, in which metformin emerged as a prophylactic therapy. Considering that MM is an elderly disease and that age is an independent risk factor for cardiotoxicity, herein, we sought to validate carfilzomib's cardiotoxicity in an in vivo model of aging. METHODS: Aged mice underwent the translational two- and four-dose protocols without and with metformin. Mice underwent echocardiography and were subsequently sacrificed for molecular analyses in the blood and cardiac tissue. RESULTS: Carfilzomib decreased proteasomal activity both in PBMCs and myocardium in both protocols. Carfilzomib induced mild cardiotoxicity after two doses and more pronounced cardiomyopathy in the four-dose protocol, while metformin maintained cardiac function. Carfilzomib led to an increased Bip expression and decreased AMPKα phosphorylation, while metformin coadministration partially decreased Bip expression and induced AMPKα phosphorylation, leading to enhanced myocardial LC3B-dependent autophagy. CONCLUSION: Carfilzomib induced cardiotoxicity in aged mice, an effect significantly reversed by metformin. The latter possesses translational importance as it further supports the clinical use of metformin as a potent prophylactic therapy.


Assuntos
Envelhecimento , Coração/efeitos dos fármacos , Metformina/farmacologia , Oligopeptídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/efeitos dos fármacos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Fosfatase 2/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Basic Res Cardiol ; 116(1): 44, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34275052

RESUMO

Thiol-based redox compounds, namely thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs), stand as a pivotal group of proteins involved in antioxidant processes and redox signaling. Glutaredoxins (Grxs) are considered as one of the major families of proteins involved in redox regulation by removal of S-glutathionylation and thereby reactivation of other enzymes with thiol-dependent activity. Grxs are also coupled to Trxs and Prxs recycling and thereby indirectly contribute to reactive oxygen species (ROS) detoxification. Peroxiredoxins (Prxs) are a ubiquitous family of peroxidases, which play an essential role in the detoxification of hydrogen peroxide, aliphatic and aromatic hydroperoxides, and peroxynitrite. The Trxs, Grxs and Prxs systems, which reversibly induce thiol modifications, regulate redox signaling involved in various biological events in the cardiovascular system. This review focuses on the current knowledge of the role of Trxs, Grxs and Prxs on cardiovascular pathologies and especially in cardiac hypertrophy, ischemia/reperfusion (I/R) injury and heart failure as well as in the presence of cardiovascular risk factors, such as hypertension, hyperlipidemia, hyperglycemia and metabolic syndrome. Further studies on the roles of thiol-dependent redox systems in the cardiovascular system will support the development of novel protective and therapeutic strategies against cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Compostos de Sulfidrila , Cardiotônicos , Doenças Cardiovasculares/tratamento farmacológico , Glutarredoxinas/metabolismo , Humanos , Oxirredução
15.
Acta Physiol (Oxf) ; 232(1): e13628, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33590724

RESUMO

AIM: Recent evidence suggests that arterial hypertension could be alternatively explained as a physiological adaptation response to water shortage, termed aestivation, which relies on complex multi-organ metabolic adjustments to prevent dehydration. Here, we tested the hypothesis that chronic water loss across diseased skin leads to similar adaptive water conservation responses as observed in experimental renal failure or high salt diet. METHODS: We studied mice with keratinocyte-specific overexpression of IL-17A which develop severe psoriasis-like skin disease. We measured transepidermal water loss and solute and water excretion in the urine. We quantified glomerular filtration rate (GFR) by intravital microscopy, and energy and nitrogen pathways by metabolomics. We measured skin blood flow and transepidermal water loss (TEWL) in conjunction with renal resistive indices and arterial blood pressure. RESULTS: Psoriatic animals lost large amounts of water across their defective cutaneous epithelial barrier. Metabolic adaptive water conservation included mobilization of nitrogen and energy from muscle to increase organic osmolyte production, solute-driven maximal anti-diuresis at normal GFR, increased metanephrine and angiotensin 2 levels, and cutaneous vasoconstriction to limit TEWL. Heat exposure led to cutaneous vasodilation and blood pressure normalization without parallel changes in renal resistive index, albeit at the expense of further increased TEWL. CONCLUSION: Severe cutaneous water loss predisposes psoriatic mice to lethal dehydration. In response to this dehydration stress, the mice activate aestivation-like water conservation motifs to maintain their body hydration status. The circulatory water conservation response explains their arterial hypertension. The nitrogen-dependency of the metabolic water conservation response explains their catabolic muscle wasting.


Assuntos
Hipertensão , Perda Insensível de Água , Animais , Estivação , Camundongos , Músculos , Pele
16.
Free Radic Biol Med ; 166: 18-32, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33582227

RESUMO

Oleuropein, one of the main polyphenolic constituents of olive, is cardioprotective against ischemia reperfusion injury (IRI). We aimed to assess the cardioprotection afforded by acute administration of oleuropein and to evaluate the underlying mechanism. Importantly, since antioxidant therapies have yielded inconclusive results in attenuating IRI-induced damage on top of conditioning strategies, we investigated whether oleuropein could enhance or imbed the cardioprotective manifestation of ischemic postconditioning (PostC). Oleuropein, given during ischemia as a single intravenous bolus dose reduced the infarct size compared to the control group both in rabbits and mice subjected to myocardial IRI. None of the inhibitors of the cardioprotective pathways, l-NAME, wortmannin and AG490, influence its infarct size limiting effects. Combined oleuropein and PostC cause further limitation of infarct size in comparison with PostC alone in both animal models. Oleuropein did not inhibit the calcium induced mitochondrial permeability transition pore opening in isolated mitochondria and did not increase cGMP production. To provide further insights to the different cardioprotective mechanism of oleuropein, we sought to characterize its anti-inflammatory potential in vivo. Oleuropein, PostC and their combination reduce inflammatory monocytes infiltration into the heart and the circulating monocyte cell population. Oleuropein's mechanism of action involves a direct protective effect on cardiomyocytes since it significantly increased their viability following simulated IRI as compared to non-treated cells. Οleuropein confers additive cardioprotection on top of PostC, via increasing the expression of the transcription factor Nrf-2 and its downstream targets in vivo. In conclusion, acute oleuropein administration during ischemia in combination with PostC provides robust and synergistic cardioprotection in experimental models of IRI by inducing antioxidant defense genes through Nrf-2 axis and independently of the classic cardioprotective signaling pathways (RISK, cGMP/PKG, SAFE).


Assuntos
Pós-Condicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica , Olea , Animais , Glucosídeos Iridoides , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo , Coelhos
17.
Basic Res Cardiol ; 116(1): 9, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547969

RESUMO

AIMS: Remote ischemic conditioning (RIC) alleviates ischemia-reperfusion injury via several pathways, including micro-RNAs (miRs) expression and oxidative stress modulation. We investigated the effects of RIC on endothelial glycocalyx, arterial stiffness, LV remodelling, and the underlying mediators within the vasculature as a target for protection. METHODS AND RESULTS: We block-randomised 270 patients within 48 h of STEMI post-PCI to either one or two cycles of bilateral brachial cuff inflation, and a control group without RIC. We measured: (a) the perfusion boundary region (PBR) of the sublingual arterial microvessels to assess glycocalyx integrity; (b) the carotid-femoral pulse wave velocity (PWV); (c) miR-144,-150,-21,-208, nitrate-nitrite (NOx) and malondialdehyde (MDA) plasma levels at baseline (T0) and 40 min after RIC onset (T3); and (d) LV volumes at baseline and after one year. Compared to baseline, there was a greater PBR and PWV decrease, miR-144 and NOx levels increase (p < 0.05) at T3 following single- than double-cycle inflation (PBR:ΔT0-T3 = 0.249 ± 0.033 vs 0.126 ± 0.034 µm, p = 0.03 and PWV:0.4 ± 0.21 vs -1.02 ± 0.24 m/s, p = 0.03). Increased miR-150,-21,-208 (p < 0.05) and reduced MDA was observed after both protocols. Increased miR-144 was related to PWV reduction (r = 0.763, p < 0.001) after the first-cycle inflation in both protocols. After one year, single-cycle RIC was associated with LV end-systolic volume reduction (LVESV) > 15% (odds-ratio of 3.75, p = 0.029). MiR-144 and PWV changes post-RIC were interrelated and associated with LVESV reduction at follow-up (r = 0.40 and 0.37, p < 0.05), in the single-cycle RIC. CONCLUSION: RIC evokes "vascular conditioning" likely by upregulation of cardio-protective microRNAs, NOx production, and oxidative stress reduction, facilitating reverse LV remodelling. CLINICAL TRIAL REGISTRATION: http://www.clinicaltrials.gov . Unique identifier: NCT03984123.


Assuntos
Artérias/fisiopatologia , Pós-Condicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Extremidade Superior/irrigação sanguínea , Função Ventricular Esquerda , Remodelação Ventricular , Adulto , Idoso , Artérias/metabolismo , MicroRNA Circulante/sangue , Células Endoteliais/metabolismo , Feminino , Glicocálix/metabolismo , Grécia , Humanos , Mediadores da Inflamação/metabolismo , Pós-Condicionamento Isquêmico/efeitos adversos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Estresse Oxidativo , Intervenção Coronária Percutânea/efeitos adversos , Estudos Prospectivos , Fluxo Sanguíneo Regional , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Rigidez Vascular
18.
Antioxid Redox Signal ; 34(7): 551-571, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295413

RESUMO

Aims: Empagliflozin (EMPA) demonstrates cardioprotective effects on diabetic myocardium but its infarct-sparing effects in normoglycemia remain unspecified. We investigated the acute and chronic effect of EMPA on infarct size after ischemia-reperfusion (I/R) injury and the mechanisms of cardioprotection in nondiabetic mice. Results: Chronic oral administration of EMPA (6 weeks) reduced myocardial infarct size after 30 min/2 h I/R (26.5% ± 3.9% vs 45.8% ± 3.3% in the control group, p < 0.01). Body weight, blood pressure, glucose levels, and cardiac function remained unchanged between groups. Acute administration of EMPA 24 or 4 h before I/R did not affect infarct size. Chronic EMPA treatment led to a significant reduction of oxidative stress biomarkers. STAT-3 (signal transducer and activator of transcription 3) was activated by Y(705) phosphorylation at the 10th minute of R, but it remained unchanged at 2 h of R and in the acute administration protocols. Proteomic analysis was employed to investigate signaling intermediates and revealed that chronic EMPA treatment regulates several pathways at reperfusion, including oxidative stress and integrin-related proteins that were further evaluated. Superoxide dismutase and vascular endothelial growth factor were increased throughout reperfusion. EMPA pretreatment (24 h) increased the viability of human microvascular endothelial cells in normoxia and on 3 h hypoxia/1 h reoxygenation and reduced reactive oxygen species production. In EMPA-treated murine hearts, CD31-/VEGFR2-positive endothelial cells and the pSTAT-3(Y705) signal derived from endothelial cells were boosted at early reperfusion. Innovation: Chronic EMPA administration reduces infarct size in healthy mice via the STAT-3 pathway and increases the survival of endothelial cells. Conclusion: Chronic but not acute administration of EMPA reduces infarct size through STAT-3 activation independently of diabetes mellitus.


Assuntos
Compostos Benzidrílicos/farmacologia , Cardiotônicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Glucosídeos/farmacologia , Microvasos/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Administração Oral , Animais , Compostos Benzidrílicos/administração & dosagem , Cardiotônicos/administração & dosagem , Hipóxia Celular/efeitos dos fármacos , Glucosídeos/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
19.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707866

RESUMO

BACKGROUND: Carfilzomib's (Cfz) adverse events in myeloma patients include cardiovascular toxicity. Since carfilzomib's vascular effects are elusive, we investigated the vascular outcomes of carfilzomib and metformin (Met) coadministration. METHODS: Mice received: (i) saline; (ii) Cfz; (iii) Met; (iv) Cfz+Met for two consecutive (acute) or six alternate days (subacute protocol). Leucocyte-derived reactive oxygen species (ROS) and serum NOx levels were determined and aortas underwent vascular and molecular analyses. Mechanistic experiments were recapitulated in aged mice who received similar treatment to young animals. Primary murine (prmVSMCs) and aged human aortic smooth muscle cells (HAoSMCs) underwent Cfz, Met and Cfz+Met treatment and viability, metabolic flux and p53-LC3-B expression were measured. Experiments were recapitulated in AngII, CoCl2 and high-glucose stimulated HAoSMCs. RESULTS: Acutely, carfilzomib alone led to vascular hypo-contraction and increased ROS release. Subacutely, carfilzomib increased ROS release without vascular manifestations. Cfz+Met increased PGF2α-vasoconstriction and LC3-B-dependent autophagy in both young and aged mice. In vitro, Cfz+Met led to cytotoxicity and autophagy, while Met and Cfz+Met shifted cellular metabolism. CONCLUSION: Carfilzomib induces a transient vascular impairment and oxidative burst. Cfz+Met increased vascular contractility and synergistically induced autophagy in all settings. Therefore, carfilzomib cannot be accredited for a permanent vascular dysfunction, while Cfz+Met exert vasoprotective potency.


Assuntos
Antineoplásicos/farmacologia , Metformina/administração & dosagem , Miócitos de Músculo Liso/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/toxicidade , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Actinas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobalto/farmacologia , Dinoprosta/farmacologia , Quimioterapia Combinada , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
Cardiovasc Res ; 116(3): 576-591, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228183

RESUMO

AIMS: Levosimendan (LEVO) a clinically-used inodilator, exerts multifaceted cardioprotective effects. Case-studies indicate protection against doxorubicin (DXR)-induced cardiotoxicity, but this effect remains obscure. We investigated the effect and mechanism of different regimens of levosimendan on sub-chronic and chronic doxorubicin cardiotoxicity. METHODS AND RESULTS: Based on preliminary in vivo experiments, rats serving as a sub-chronic model of doxorubicin-cardiotoxicity and were divided into: Control (N/S-0.9%), DXR (18 mg/kg-cumulative), DXR+LEVO (LEVO, 24 µg/kg-cumulative), and DXR+LEVO (acute) (LEVO, 24 µg/kg-bolus) for 14 days. Protein kinase-B (Akt), endothelial nitric oxide synthase (eNOS), and protein kinase-A and G (PKA/PKG) pathways emerged as contributors to the cardioprotection, converging onto phospholamban (PLN). To verify the contribution of PLN, phospholamban knockout (PLN-/-) mice were assigned to PLN-/-/Control (N/S-0.9%), PLN-/-/DXR (18 mg/kg), and PLN-/-/DXR+LEVO (ac) for 14 days. Furthermore, female breast cancer-bearing (BC) mice were divided into: Control (normal saline 0.9%, N/S 0.9%), DXR (18 mg/kg), LEVO, and DXR+LEVO (LEVO, 24 µg/kg-bolus) for 28 days. Echocardiography was performed in all protocols. To elucidate levosimendan's cardioprotective mechanism, primary cardiomyocytes were treated with doxorubicin or/and levosimendan and with N omega-nitro-L-arginine methyl ester (L-NAME), DT-2, and H-89 (eNOS, PKG, and PKA inhibitors, respectively); cardiomyocyte-toxicity was assessed. Single bolus administration of levosimendan abrogated DXR-induced cardiotoxicity and activated Akt/eNOS and cAMP-PKA/cGMP-PKG/PLN pathways but failed to exert cardioprotection in PLN-/- mice. Levosimendan's cardioprotection was also evident in the BC model. Finally, in vitro PKA inhibition abrogated levosimendan-mediated cardioprotection, indicating that its cardioprotection is cAMP-PKA dependent, while levosimendan preponderated over milrinone and dobutamine, by ameliorating calcium overload. CONCLUSION: Single dose levosimendan prevented doxorubicin cardiotoxicity through a cAMP-PKA-PLN pathway, highlighting the role of inotropy in doxorubicin cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Fármacos Cardiovasculares/farmacologia , Doxorrubicina/toxicidade , Cardiopatias/prevenção & controle , Neoplasias Mamárias Experimentais/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Simendana/farmacologia , Animais , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cardiotoxicidade , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Masculino , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...