Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
EMBO Rep ; 24(10): e57084, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37691494

RESUMO

Intestinal epithelial cells are covered by the brush border, which consists of densely packed microvilli. The Intermicrovillar Adhesion Complex (IMAC) links the microvilli and is required for proper brush border organization. Whether microvillus crosslinking is involved in the intestinal barrier function or colitis is currently unknown. We investigate the role of microvillus crosslinking in colitis in mice with deletion of the IMAC component CDHR5. Electron microscopy shows pronounced brush border defects in CDHR5-deficient mice. The defects result in severe mucosal damage after exposure to the colitis-inducing agent DSS. DSS increases the permeability of the mucus layer and brings bacteria in direct contact with the disorganized brush border of CDHR5-deficient mice. This correlates with bacterial invasion into the epithelial cell layer which precedes epithelial apoptosis and inflammation. Single-cell RNA sequencing data of patients with ulcerative colitis reveals downregulation of CDHR5 in enterocytes of diseased areas. Our results provide experimental evidence that a combination of microvillus crosslinking defects with increased permeability of the mucus layer sensitizes to inflammatory bowel disease.

2.
Cytokine ; 161: 156075, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323190

RESUMO

Metastatic colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional chemotherapy extended the lifespan of cancer patients by only a few months, but targeted therapies and immunotherapy prolonged survival and led to long-term remissions in some cases. Type I and II interferons have direct pro-apoptotic and anti-proliferative effects on cancer cells and stimulate anti-cancer immunity. As a result, interferon production by cells in the tumor microenvironment is in the spotlight of immunotherapies as it affects the responses of anti-cancer immune cells. However, promoting effects of interferons on colorectal cancer metastasis have also been reported. Here we summarize our knowledge about pro- and anti-metastatic effects of type I and II interferons in colorectal cancer liver metastasis and discuss possible therapeutic implications.


Assuntos
Neoplasias Colorretais , Interferons , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/patologia , Imunoterapia , Neoplasias Hepáticas/secundário , Microambiente Tumoral
3.
Oncoimmunology ; 11(1): 2127271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185806

RESUMO

Janus kinase Tyk2 is implicated in cancer immune surveillance, but its role in solid tumors is not well defined. We used Tyk2 knockout mice (Tyk2Δ/Δ) and mice with conditional deletion of Tyk2 in hematopoietic (Tyk2ΔHem) or intestinal epithelial cells (Tyk2ΔIEC) to assess their cell type-specific functions in chemically induced colorectal cancer. All Tyk2-deficient mouse models showed a higher tumor burden after AOM-DSS treatment compared to their corresponding wild-type controls (Tyk2+/+ and Tyk2fl/fl), demonstrating tumor-suppressive functions of Tyk2 in immune cells and epithelial cancer cells. However, specific deletion of Tyk2 in hematopoietic cells or in intestinal epithelial cells was insufficient to accelerate tumor progression, while deletion in both compartments promoted carcinoma formation. RNA-seq and proteomics revealed that tumors of Tyk2Δ/Δ and Tyk2ΔIEC mice were immunoedited in different ways with downregulated and upregulated IFNγ signatures, respectively. Accordingly, the IFNγ-regulated immune checkpoint Ido1 was downregulated in Tyk2Δ/Δ and upregulated in Tyk2ΔIEC tumors, although both showed reduced CD8+ T cell infiltration. These data suggest that Tyk2Δ/Δ tumors are Ido1-independent and poorly immunoedited while Tyk2ΔIEC tumors require Ido1 for immune evasion. Our study shows that Tyk2 prevents Ido1 expression in CRC cells and promotes CRC immune surveillance in the tumor stroma. Both of these Tyk2-dependent mechanisms must work together to prevent CRC progression.


Assuntos
Colite , Neoplasias Colorretais , Animais , Colite/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Janus Quinases/metabolismo , Camundongos , Camundongos Knockout
4.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563665

RESUMO

Colitis is a major risk factor for the development of colorectal cancer, leading to colitis-associated colorectal cancer (CAC). The most commonly used animal model to study CAC is the azoxymethane-dextran sulphate-sodium (AOM/DSS) model. The ideal experimental conditions of this model depend on several factors, including the used mouse strain. No data on feasibility and conditions for older mice, e.g., for aging studies, have yet been reported. Thus, we conducted a descriptive, observational pilot study where CAC was induced in 14-month-old female Balb/C and C57/Bl6 mice using 12.5 mg/kg AOM i.p. and three different concentrations of DSS (1, 2, and 3%) in drinking water (ad. lib.). The mice were monitored regularly during the three-month experimental phase. After euthanasia, the colons of the mice were evaluated macroscopically and microscopically. Both the mouse strains showed a DSS-concentration-dependent induction of CAC. Carcinomas were only observed at 3% DSS. The DSS dose was found to be significantly correlated with the histology score and % Ki67 positive cells only in C57/Bl6 mice but not in Balb/C mice, which showed a variable response to the CAC induction. No differences in colon length, weight, or mucin content were observed. Optimal conditions for CAC induction in these aged animals are thus considered to be 3% DSS, as carcinomas did not develop when 2% DSS was used. On the other hand, Balb/C mice reacted severely to 3% DSS, indicating that 2.5% DSS may be the "sweet spot" for future experiments comparing CAC in aged Balb/C and C57/Bl6 mice. This model will allow investigation of the effect of aging on CAC development and therapy.


Assuntos
Carcinoma , Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Animais , Azoximetano , Carcinogênese , Colite/induzido quimicamente , Colite/complicações , Colite/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Projetos Piloto
5.
Hepatol Commun ; 5(11): 1939-1952, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558826

RESUMO

Tumor-infiltrating immune cells are relevant prognostic and immunotherapeutic targets in hepatocellular carcinoma (HCC). Mast cells play a key role in allergic response but may also be involved in anticancer immunity. Digital morphometric analysis of patient tissue sections has become increasingly available for clinical routine and provides unbiased quantitative data. Here, we apply morphometric analysis of mast cells to retrospectively evaluate their relevance for HCC recurrence in patients after orthotopic liver transplantation (OLT). A total of 173 patients underwent OLT for HCC at the Medical University of Vienna (21 women, 152 men; 55.2 ± 7.9 years; 74 beyond Milan criteria, 49 beyond up-to-7 criteria for liver transplantation). Tissue arrays from tumors and corresponding surrounding tissues were immunohistochemically stained for mast cell tryptase. Mast cells were quantified by digital tissue morphometric analysis and correlated with HCC recurrence. Mast cells were detected in 93% of HCC tumors and in all available surrounding liver tissues. Tumor tissues revealed lower mast cell density than corresponding surrounding tissues (P < 0.0001). Patients lacking intratumoral mast cells (iMCs) displayed larger tumors and higher tumor recurrence rates both in the whole cohort (hazard ratio [HR], 2.74; 95% confidence interval [CI], 1.09-6.93; P = 0.029) and in patients beyond transplant criteria (Milan HR, 2.81; 95% CI, 1.04-7.62; P = 0.01; up-to-7 HR, 3.58; 95% CI, 1.17-10.92; P = 0.02). Notably, high iMC identified additional patients at low risk classified outside the Milan and up-to-7 criteria, whereas low iMC identified additional patients at high risk classified within the alpha-fetoprotein French and Metroticket criteria. iMCs independently predicted tumor recurrence in a multivariate Cox regression analysis (Milan HR, 2.38; 95% CI, 1.16-4.91; P = 0.019; up-to-7 HR, 2.21; 95% CI, 1.05-4.62; P = 0.035). Conclusion: Hepatic mast cells might be implicated in antitumor immunity in HCC. Morphometric analysis of iMCs refines prognosis of HCC recurrence after liver transplantation.


Assuntos
Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Transplante de Fígado , Mastócitos/patologia , Recidiva Local de Neoplasia/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Feminino , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco , Resultado do Tratamento
6.
Sci Transl Med ; 13(601)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233950

RESUMO

Inflammation is a well-known driver of lung tumorigenesis. One strategy by which tumor cells escape tight homeostatic control is by decreasing the expression of the potent anti-inflammatory protein tumor necrosis factor alpha-induced protein 3 (TNFAIP3), also known as A20. We observed that tumor cell intrinsic loss of A20 markedly enhanced lung tumorigenesis and was associated with reduced CD8+ T cell-mediated immune surveillance in patients with lung cancer and in mouse models. In mice, we observed that this effect was completely dependent on increased cellular sensitivity to interferon-γ (IFN-γ) signaling by aberrant activation of TANK-binding kinase 1 (TBK1) and increased downstream expression and activation of signal transducer and activator of transcription 1 (STAT1). Interrupting this autocrine feed forward loop by knocking out IFN-α/ß receptor completely restored infiltration of cytotoxic T cells and rescued loss of A20 depending tumorigenesis. Downstream of STAT1, programmed death ligand 1 (PD-L1) was highly expressed in A20 knockout lung tumors. Accordingly, immune checkpoint blockade (ICB) treatment was highly efficient in mice harboring A20-deficient lung tumors. Furthermore, an A20 loss-of-function gene expression signature positively correlated with survival of melanoma patients treated with anti-programmed cell death protein 1. Together, we have identified A20 as a master immune checkpoint regulating the TBK1-STAT1-PD-L1 axis that may be exploited to improve ICB therapy in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Adenocarcinoma de Pulmão/genética , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Regulação para Baixo , Humanos , Interferon gama/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Transdução de Sinais
8.
Commun Biol ; 3(1): 252, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444775

RESUMO

Tumors have evolved mechanisms to escape anti-tumor immunosurveillance. They limit humoral and cellular immune activities in the stroma and render tumors resistant to immunotherapy. Sensitizing tumor cells to immune attack is an important strategy to revert immunosuppression. However, the underlying mechanisms of immune escape are still poorly understood. Here we discover Indoleamine-2,3-dioxygenase-1 (IDO1)+ Paneth cells in the stem cell niche of intestinal crypts and tumors, which promoted immune escape of colorectal cancer (CRC). Ido1 expression in Paneth cells was strictly Stat1 dependent. Loss of IDO1+ Paneth cells in murine intestinal adenomas with tumor cell-specific Stat1 deletion had profound effects on the intratumoral immune cell composition. Patient samples and TCGA expression data suggested corresponding cells in human colorectal tumors. Thus, our data uncovered an immune escape mechanism of CRC and identify IDO1+ Paneth cells as a target for immunotherapy.


Assuntos
Neoplasias Colorretais/patologia , Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias Intestinais/patologia , Celulas de Paneth/imunologia , Fator de Transcrição STAT1/fisiologia , Animais , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Neoplasias Intestinais/imunologia , Neoplasias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Angiogenesis ; 23(2): 159-177, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31667643

RESUMO

WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Neovascularização Patológica/induzido quimicamente , Proteína Wnt2/metabolismo , Proteína Wnt2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Microambiente Tumoral/fisiologia
10.
Int J Cancer ; 145(12): 3376-3388, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31407334

RESUMO

Oncogenic K-RAS has been difficult to target and currently there is no K-RAS-based targeted therapy available for patients suffering from K-RAS-driven lung adenocarcinoma (AC). Alternatively, targeting K-RAS-downstream effectors, K-RAS-cooperating signaling pathways or cancer hallmarks, such as tumor-promoting inflammation, has been shown to be a promising therapeutic strategy. Since the JAK-STAT pathway is considered to be a central player in inflammation-mediated tumorigenesis, we investigated here the implication of JAK-STAT signaling and the therapeutic potential of JAK1/2 inhibition in K-RAS-driven lung AC. Our data showed that JAK1 and JAK2 are activated in human lung AC and that increased activation of JAK-STAT signaling correlated with disease progression and K-RAS activity in human lung AC. Accordingly, administration of the JAK1/2 selective tyrosine kinase inhibitor ruxolitinib reduced proliferation of tumor cells and effectively reduced tumor progression in immunodeficient and immunocompetent mouse models of K-RAS-driven lung AC. Notably, JAK1/2 inhibition led to the establishment of an antitumorigenic tumor microenvironment, characterized by decreased levels of tumor-promoting chemokines and cytokines and reduced numbers of infiltrating myeloid derived suppressor cells, thereby impairing tumor growth. Taken together, we identified JAK1/2 inhibition as promising therapy for K-RAS-driven lung AC.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
11.
Cancers (Basel) ; 11(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443474

RESUMO

Genetically-engineered mouse models (GEMMs) lacking diseased-associated gene(s) globally or in a tissue-specific manner represent an attractive tool with which to assess the efficacy and toxicity of targeted pharmacological inhibitors. Stat3 and Stat5a/b transcription factors have been implicated in several pathophysiological conditions, and pharmacological inhibition of both transcription factors has been proposed to treat certain diseases, such as malignancies. To model combined inhibition of Stat3 and Stat5a/b we have developed a GEMM harboring a flox Stat3-Stat5a/b allele (Stat5/3loxP/loxP mice) and generated mice lacking Stat3 and Stat5a/b in hepatocytes (Stat5/3Δhep/Δhep). Stat5/3Δhep/Δhep mice exhibited a marked reduction of STAT3, STAT5A and STAT5B proteins in the liver and developed steatosis, a phenotype that resembles mice lacking Stat5a/b in hepatocytes. In addition, embryonic deletion of Stat3 and Stat5a/b (Stat5/3Δ/Δ mice) resulted in lethality, similar to Stat3Δ/Δ mice. This data illustrates that Stat5/3loxP/loxP mice are functional and can be used as a valuable tool to model the combined inhibition of Stat3 and Stat5a/b in tumorigenesis and other diseases.

12.
Eur Respir J ; 54(3)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320452

RESUMO

The interleukin (IL)-1 family of cytokines is strongly associated with systemic sclerosis (SSc) and pulmonary involvement, but the molecular mechanisms are poorly understood. The aim of this study was to assess the role of IL-1α and IL-1ß in pulmonary vascular and interstitial remodelling in a mouse model of SSc.IL-1α and IL-1ß were localised in lungs of SSc patients and in the fos-related antigen-2 (Fra-2) transgenic (TG) mouse model of SSc. Lung function, haemodynamic parameters and pulmonary inflammation were measured in Fra-2 TG mice with or without 8 weeks of treatment with the IL-1 receptor antagonist anakinra (25 mg·kg-1·day-1). Direct effects of IL-1 on pulmonary arterial smooth muscle cells (PASMCs) and parenchymal fibroblasts were investigated in vitroFra-2 TG mice exhibited increased collagen deposition in the lung, restrictive lung function and enhanced muscularisation of the vasculature with concomitant pulmonary hypertension reminiscent of the changes in SSc patients. Immunoreactivity of IL-1α and IL-1ß was increased in Fra-2 TG mice and in patients with SSc. IL-1 stimulation reduced collagen expression in PASMCs and parenchymal fibroblasts via distinct signalling pathways. Blocking IL-1 signalling in Fra-2 TG worsened pulmonary fibrosis and restriction, enhanced T-helper cell type 2 (Th2) inflammation, and increased the number of pro-fibrotic, alternatively activated macrophages.Our data suggest that blocking IL-1 signalling as currently investigated in several clinical studies might aggravate pulmonary fibrosis in specific patient subsets due to Th2 skewing of immune responses and formation of alternatively activated pro-fibrogenic macrophages.


Assuntos
Inflamação/metabolismo , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Escleroderma Sistêmico/metabolismo , Células Th2/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Fibrose Pulmonar/patologia , Testes de Função Respiratória , Transdução de Sinais
13.
Cell Rep ; 26(9): 2394-2406.e5, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811989

RESUMO

Cytomegalovirus (CMV) has a high prevalence worldwide, is often fatal for immunocompromised patients, and causes bone marrow suppression. Deficiency of signal transducer and activator of transcription 1 (STAT1) results in severely impaired antiviral immunity. We have used cell-type restricted deletion of Stat1 to determine the importance of myeloid cell activity for the defense against murine CMV (MCMV). We show that myeloid STAT1 limits MCMV burden and infection-associated pathology in the spleen but does not affect ultimate clearance of infection. Unexpectedly, we found an essential role of myeloid STAT1 in the induction of extramedullary hematopoiesis (EMH). The EMH-promoting function of STAT1 was not restricted to MCMV infection but was also observed during CpG oligodeoxynucleotide-induced sterile inflammation. Collectively, we provide genetic evidence that signaling through STAT1 in myeloid cells is required to restrict MCMV at early time points post-infection and to induce compensatory hematopoiesis in the spleen.


Assuntos
Hematopoese Extramedular , Infecções por Herpesviridae/fisiopatologia , Muromegalovirus , Células Mieloides/fisiologia , Fator de Transcrição STAT1/fisiologia , Animais , Células Cultivadas , Feminino , Deleção de Genes , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Células Matadoras Naturais/imunologia , Masculino , Camundongos Endogâmicos C57BL , Muromegalovirus/fisiologia , Receptor de Interferon alfa e beta/genética , Receptores de Interferon/genética , Receptores de Interleucina/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Baço/patologia , Baço/virologia , Estresse Fisiológico , Replicação Viral
14.
Leukemia ; 33(3): 696-709, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30131584

RESUMO

TYK2 is a member of the JAK family of tyrosine kinases that is involved in chromosomal translocation-induced fusion proteins found in anaplastic large cell lymphomas (ALCL) that lack rearrangements activating the anaplastic lymphoma kinase (ALK). Here we demonstrate that TYK2 is highly expressed in all cases of human ALCL, and that in a mouse model of NPM-ALK-induced lymphoma, genetic disruption of Tyk2 delays the onset of tumors and prolongs survival of the mice. Lymphomas in this model lacking Tyk2 have reduced STAT1 and STAT3 phosphorylation and reduced expression of Mcl1, a pro-survival member of the BCL2 family. These findings in mice are mirrored in human ALCL cell lines, in which TYK2 is activated by autocrine production of IL-10 and IL-22 and by interaction with specific receptors expressed by the cells. Activated TYK2 leads to STAT1 and STAT3 phosphorylation, activated expression of MCL1 and aberrant ALCL cell survival. Moreover, TYK2 inhibitors are able to induce apoptosis in ALCL cells, regardless of the presence or absence of an ALK-fusion. Thus, TYK2 is a dependency that is required for ALCL cell survival through activation of MCL1 expression. TYK2 represents an attractive drug target due to its essential enzymatic domain, and TYK2-specific inhibitors show promise as novel targeted inhibitors for ALCL.


Assuntos
Linfoma Anaplásico de Células Grandes/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fator de Transcrição STAT1/genética , TYK2 Quinase/genética , Quinase do Linfoma Anaplásico/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Camundongos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Translocação Genética/efeitos dos fármacos , Translocação Genética/genética
15.
Sci Transl Med ; 10(446)2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925635

RESUMO

On the basis of clinical trials using first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), it became a doctrine that V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-RAS) mutations drive resistance to EGFR inhibition in non-small cell lung cancer (NSCLC). Conversely, we provide evidence that EGFR signaling is engaged in K-RAS-driven lung tumorigenesis in humans and in mice. Specifically, genetic mouse models revealed that deletion of Egfr quenches mutant K-RAS activity and transiently reduces tumor growth. However, EGFR inhibition initiates a rapid resistance mechanism involving non-EGFR ERBB family members. This tumor escape mechanism clarifies the disappointing outcome of first-generation TKIs and suggests high therapeutic potential of pan-ERBB inhibitors. On the basis of various experimental models including genetically engineered mouse models, patient-derived and cell line-derived xenografts, and in vitro experiments, we demonstrate that the U.S. Food and Drug Administration-approved pan-ERBB inhibitor afatinib effectively impairs K-RAS-driven lung tumorigenesis. Our data support reconsidering the use of pan-ERBB inhibition in clinical trials to treat K-RAS-mutated NSCLC.


Assuntos
Afatinib/uso terapêutico , Carcinogênese/patologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Afatinib/farmacologia , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Transdução de Sinais/efeitos dos fármacos
16.
Sci Rep ; 8(1): 6220, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670256

RESUMO

Tumor-infiltrating immune cells are highly relevant for prognosis and identification of immunotherapy targets in hepatocellular carcinoma (HCC). The recently developed CIBERSORT method allows immune cell profiling by deconvolution of gene expression microarray data. By applying CIBERSORT, we assessed the relative proportions of immune cells in 41 healthy human livers, 305 HCC samples and 82 HCC adjacent tissues. The obtained immune cell profiles provided enumeration and activation status of 22 immune cell subtypes. Mast cells were evaluated by immunohistochemistry in ten HCC patients. Activated mast cells, monocytes and plasma cells were decreased in HCC, while resting mast cells, total and naïve B cells, CD4+ memory resting and CD8+ T cells were increased when compared to healthy livers. Previously described S1, S2 and S3 molecular HCC subclasses demonstrated increased M1-polarized macrophages in the S3 subclass with good prognosis. Strong total immune cell infiltration into HCC correlated with total B cells, memory B cells, T follicular helper cells and M1 macrophages, whereas weak infiltration was linked to resting NK cells, neutrophils and resting mast cells. Immunohistochemical analysis of patient samples confirmed the reduced frequency of mast cells in human HCC tumor tissue as compared to tumor adjacent tissue. Our data demonstrate that deconvolution of gene expression data by CIBERSORT provides valuable information about immune cell composition of HCC patients.


Assuntos
Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Microambiente Celular/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Fígado/imunologia , Microambiente Tumoral/imunologia , Imunidade Adaptativa , Estudos de Casos e Controles , Humanos , Imunidade Inata , Imunofenotipagem , Fígado/citologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Subpopulações de Linfócitos/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia
17.
Oncotarget ; 9(11): 10054-10068, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29515790

RESUMO

Insufficient supplementation with the micronutrient selenium and persistent hepatic inflammation predispose to hepatocellular carcinoma (HCC). Inflammation-associated reactive oxygen species attack membrane lipids and form lipid hydroperoxides able to propagate oxidative hepatic damage. Selenium-containing enzyme glutathione peroxidase 4 (GPx4) antagonizes this damage by reducing lipid hydroperoxides to respective hydroxides. However, the role of GPx4 in HCC remains elusive. We generated two human HCC cell lines with stable overexpression of GPx4, performed xenotransplantation into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) host mice and characterized the tumors formed. The experimental data were verified using gene expression data from two independent HCC patient cohorts. GPx4 overexpression protected from oxidative stress and reduced intracellular free radical level. GPx4-overexpressing cells displayed impaired tumor growth, reduced proliferation, altered angiogenesis and decreased expression of clinically relevant cytokine interleukin-8 and C-reactive protein. Moreover, GPx4 overexpression impaired migration of endothelial cells in vitro, and enhanced expression of thrombospondin 1, an endogenous inhibitor of angiogenesis. In patients, GPx4 expression in tumors positively correlated with survival and was linked to pathways which regulate cell proliferation, motility, tissue remodelling, immune response and M1 macrophage polarization. The patient data largely confirmed experimental findings especially in a subclass of poor prognosis tumors with high proliferation. GPx4 suppresses formation and progression of HCC by inhibition of angiogenesis and tumor cell proliferation as well as by immune-mediated mechanisms. Modification of GPx4 expression may represent a novel tool for HCC prevention or treatment.

18.
Mol Oncol ; 12(4): 514-528, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29419930

RESUMO

The interferon-inducible transcription factor STAT1 is a tumor suppressor in various malignancies. We investigated sex-specific STAT1 functions in colitis and colitis-associated colorectal cancer (CRC) using mice with specific STAT1 deletion in intestinal epithelial cells (STAT1∆IEC ). Male but not female STAT1∆IEC mice were more resistant to DSS-induced colitis than sex-matched STAT1flox/flox controls and displayed reduced intraepithelial infiltration of CD8+ TCRαß+ granzyme B+ T cells. Moreover, DSS treatment failed to induce expression of T-cell-attracting chemokines in intestinal epithelial cells of male but not of female STAT1∆IEC mice. Application of the AOM-DSS protocol for induction of colitis-associated CRC resulted in increased intestinal tumor load in male but not in female STAT1∆IEC mice. A sex-specific stratification of human CRC patients corroborated the data obtained in mice and revealed that reduced tumor cell-intrinsic nuclear STAT1 protein expression is a poor prognostic factor in men but not in women. These data demonstrate that epithelial STAT1 is a male-specific tumor suppressor in CRC of mice and humans.


Assuntos
Colite/metabolismo , Neoplasias Colorretais/metabolismo , Fator de Transcrição STAT1/metabolismo , Caracteres Sexuais , Proteínas Supressoras de Tumor/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Quimiocinas/biossíntese , Colite/induzido quimicamente , Colite/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Sulfato de Dextrana/toxicidade , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Fator de Transcrição STAT1/genética , Proteínas Supressoras de Tumor/genética
20.
Cancer Med ; 7(2): 445-453, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29282901

RESUMO

Salivary gland cancer is an aggressive and painful cancer, but a rare tumor type accounting for only ~0.5% of cancer cases. Tumors of the salivary gland exhibit heterogeneous histologic and genetic features and they are subdivided into different subtypes, with adenoid cystic carcinomas (ACC) being one of the most abundant. Treatment of ACC patients is afflicted by high recurrence rates, the high potential of the tumors to metastasize, as well as the poor response of ACC to chemotherapy. A prerequisite for the development of targeted therapies is insightful genetic information for driver core cancer pathways. Here, we developed a transgenic mouse model toward establishment of a preclinical model. There is currently no available mouse model for adenoid cystic carcinomas as a rare disease entity to serve as a test system to block salivary gland tumors with targeted therapy. Based on tumor genomic data of ACC patients, a key role for the activation of the PI3K-AKT-mTOR pathway was suggested in tumors of secretory glands. Therefore, we investigated the role of Akt3 expression in tumorigenesis and report that Akt3 overexpression results in ACC of salivary glands with 100% penetrance, while abrogation of transgenic Akt3 expression could revert the phenotype. In summary, our findings validate a novel mouse model to study ACC and highlight the druggable potential of AKT3 in the treatment of salivary gland patients.


Assuntos
Carcinoma Adenoide Cístico/patologia , Doxiciclina/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias das Glândulas Salivares/patologia , Animais , Antibacterianos/administração & dosagem , Carcinoma Adenoide Cístico/tratamento farmacológico , Carcinoma Adenoide Cístico/enzimologia , Humanos , Camundongos , Camundongos Transgênicos , Prognóstico , Neoplasias das Glândulas Salivares/tratamento farmacológico , Neoplasias das Glândulas Salivares/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...