Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(91): eadi9517, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241401

RESUMO

Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II , Antígenos HLA
3.
J Immunother Cancer ; 11(4)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028818

RESUMO

BACKGROUND: Immune responses against tumors are subject to negative feedback regulation. Immune checkpoint inhibitors (ICIs) blocking Programmed cell death protein 1 (PD-1), a receptor expressed on T cells, or its ligand PD-L1 have significantly improved the treatment of cancer, in particular malignant melanoma. Nevertheless, responses and durability are variables, suggesting that additional critical negative feedback mechanisms exist and need to be targeted to improve therapeutic efficacy. METHODS: We used different syngeneic melanoma mouse models and performed PD-1 blockade to identify novel mechanisms of negative immune regulation. Genetic gain-of-function and loss-of-function approaches as well as small molecule inhibitor applications were used for target validation in our melanoma models. We analyzed mouse melanoma tissues from treated and untreated mice by RNA-seq, immunofluorescence and flow cytometry to detect changes in pathway activities and immune cell composition of the tumor microenvironment. We analyzed tissue sections of patients with melanoma by immunohistochemistry as well as publicly available single-cell RNA-seq data and correlated target expression with clinical responses to ICIs. RESULTS: Here, we identified 11-beta-hydroxysteroid dehydrogenase-1 (HSD11B1), an enzyme that converts inert glucocorticoids into active forms in tissues, as negative feedback mechanism in response to T cell immunotherapies. Glucocorticoids are potent suppressors of immune responses. HSD11B1 was expressed in different cellular compartments of melanomas, most notably myeloid cells but also T cells and melanoma cells. Enforced expression of HSD11B1 in mouse melanomas limited the efficacy of PD-1 blockade, whereas small molecule HSD11B1 inhibitors improved responses in a CD8+ T cell-dependent manner. Mechanistically, HSD11B1 inhibition in combination with PD-1 blockade augmented the production of interferon-γ by T cells. Interferon pathway activation correlated with sensitivity to PD-1 blockade linked to anti-proliferative effects on melanoma cells. Furthermore, high levels of HSD11B1, predominantly expressed by tumor-associated macrophages, were associated with poor responses to ICI therapy in two independent cohorts of patients with advanced melanomas analyzed by different methods (scRNA-seq, immunohistochemistry). CONCLUSION: As HSD11B1 inhibitors are in the focus of drug development for metabolic diseases, our data suggest a drug repurposing strategy combining HSD11B1 inhibitors with ICIs to improve melanoma immunotherapy. Furthermore, our work also delineated potential caveats emphasizing the need for careful patient stratification.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Glucocorticoides , Imunoterapia , Melanoma , Animais , Camundongos , Linfócitos T CD8-Positivos , Glucocorticoides/uso terapêutico , Interferon gama/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Reposicionamento de Medicamentos
5.
STAR Protoc ; 3(1): 101038, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35059651

RESUMO

This protocol details the procedure for CRISPR-assisted insertion of epitopes (CRISPitope), a flexible approach for generating tumor cells expressing model CD8+ T cell epitopes fused to endogenously encoded gene products of choice. CRISPitope-engineered tumor cells can be recognized by T cell receptor-transgenic (TCRtg) CD8+ T cells that are widely used in immunology research. Using mice inoculated with CRISPitope-engineered tumor cells, researchers can investigate how the choice of the target antigen for T cell immunotherapies influences treatment efficacy and resistance mechanisms. For complete details on the use and execution of this protocol, please refer to Effern et al. (2020).


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Modelos Animais de Doenças , Epitopos de Linfócito T , Imunoterapia Adotiva/métodos , Camundongos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética
6.
Immunity ; 53(4): 805-823.e15, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053330

RESUMO

The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores Virais/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Imunoterapia/métodos , Células Jurkat , Linfócitos do Interstício Tumoral/imunologia , Masculino , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL
7.
Immunity ; 53(3): 476-478, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937147

RESUMO

In this issue, Acharya et al. demonstrate that glucocorticoids produced by macrophages and monocytes in the tumor microenvironment induce a dysfunctional CD8+ T cell phenotype. Blocking myeloid glucocorticogenesis enhances tumor immune surveillance and responsiveness to immune checkpoint therapy.


Assuntos
Glucocorticoides , Microambiente Tumoral , Linfócitos T CD8-Positivos , Diferenciação Celular , Células Mieloides
8.
Immunity ; 53(3): 564-580.e9, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750334

RESUMO

Tumor immune escape limits durable responses to T cell therapy. Here, we examined how regulation and function of gene products that provide the target epitopes for CD8+ T cell anti-tumor immunity influence therapeutic efficacy and resistance. We used a CRISPR-Cas9-based method (CRISPitope) in syngeneic melanoma models to fuse the same model CD8+ T cell epitope to the C-termini of different endogenous gene products. Targeting melanosomal proteins or oncogenic CDK4R24C (Cyclin-dependent kinase 4) by adoptive cell transfer (ACT) of the same epitope-specific CD8+ T cells revealed diverse genetic and non-genetic immune escape mechanisms. ACT directed against melanosomal proteins, but not CDK4R24C, promoted melanoma dedifferentiation, and increased myeloid cell infiltration. CDK4R24C antigen persistence was associated with an interferon-high and T-cell-rich tumor microenvironment, allowing for immune checkpoint inhibition as salvage therapy. Thus, the choice of target antigen determines the phenotype and immune contexture of recurrent melanomas, with implications to the design of cancer immunotherapies.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/transplante , Epitopos de Linfócito T/imunologia , Melanoma/imunologia , Melanoma/terapia , Evasão Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Epitopos de Linfócito T/genética , Técnicas de Inativação de Genes , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Células Mieloides/imunologia , Microambiente Tumoral/imunologia
9.
Cancer Discov ; 9(12): 1754-1773, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31699796

RESUMO

We explored the mechanism of action of CD39 antibodies that inhibit ectoenzyme CD39 conversion of extracellular ATP (eATP) to AMP and thus potentially augment eATP-P2-mediated proinflammatory responses. Using syngeneic and humanized tumor models, we contrast the potency and mechanism of anti-CD39 mAbs with other agents targeting the adenosinergic pathway. We demonstrate the critical importance of an eATP-P2X7-ASC-NALP3-inflammasome-IL18 pathway in the antitumor activity mediated by CD39 enzyme blockade, rather than simply reducing adenosine as mechanism of action. Efficacy of anti-CD39 activity was underpinned by CD39 and P2X7 coexpression on intratumor myeloid subsets, an early signature of macrophage depletion, and active IL18 release that facilitated the significant expansion of intratumor effector T cells. More importantly, anti-CD39 facilitated infiltration into T cell-poor tumors and rescued anti-PD-1 resistance. Anti-human CD39 enhanced human T-cell proliferation and Th1 cytokine production and suppressed human B-cell lymphoma in the context of autologous Epstein-Barr virus-specific T-cell transfer. SIGNIFICANCE: Overall, these data describe a potent and novel mechanism of action of antibodies that block mouse or human CD39, triggering an eATP-P2X7-inflammasome-IL18 axis that reduces intratumor macrophage number, enhances intratumor T-cell effector function, overcomes anti-PD-1 resistance, and potentially enhances the efficacy of adoptive T-cell transfer.This article is highlighted in the In This Issue feature, p. 1631.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos Imunológicos/administração & dosagem , Apirase/antagonistas & inibidores , Inflamassomos/metabolismo , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias/imunologia , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais
10.
Nature ; 566(7745): E10, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742076

RESUMO

Panel j was inadvertently labelled as panel k in the caption to Fig. 4. Similarly, 'Fig. 4k' should have been 'Fig. 4j' in the sentence beginning 'TNF-α-deficient gBT-I cells were…'. In addition, the surname of author Umaimainthan Palendira was misspelled 'Palendria'. These errors have been corrected online.

11.
Nature ; 565(7739): 366-371, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598548

RESUMO

The immune system can suppress tumour development both by eliminating malignant cells and by preventing the outgrowth and spread of cancer cells that resist eradication1. Clinical and experimental data suggest that the latter mode of control-termed cancer-immune equilibrium1-can be maintained for prolonged periods of time, possibly up to several decades2-4. Although cancers most frequently originate in epithelial layers, the nature and spatiotemporal dynamics of immune responses that maintain cancer-immune equilibrium in these tissue compartments remain unclear. Here, using a mouse model of transplantable cutaneous melanoma5, we show that tissue-resident memory CD8+ T cells (TRM cells) promote a durable melanoma-immune equilibrium that is confined to the epidermal layer of the skin. A proportion of mice (~40%) transplanted with melanoma cells remained free of macroscopic skin lesions long after epicutaneous inoculation, and generation of tumour-specific epidermal CD69+ CD103+ TRM cells correlated with this spontaneous disease control. By contrast, mice deficient in TRM formation were more susceptible to tumour development. Despite being tumour-free at the macroscopic level, mice frequently harboured melanoma cells in the epidermal layer of the skin long after inoculation, and intravital imaging revealed that these cells were dynamically surveyed by TRM cells. Consistent with their role in melanoma surveillance, tumour-specific TRM cells that were generated before melanoma inoculation conferred profound protection from tumour development independently of recirculating T cells. Finally, depletion of TRM cells triggered tumour outgrowth in a proportion (~20%) of mice with occult melanomas, demonstrating that TRM cells can actively suppress cancer progression. Our results show that TRM cells have a fundamental role in the surveillance of subclinical melanomas in the skin by maintaining cancer-immune equilibrium. As such, they provide strong impetus for exploring these cells as targets of future anticancer immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Homeostase/imunologia , Memória Imunológica/imunologia , Melanoma Experimental/imunologia , Neoplasias Cutâneas/imunologia , Pele/imunologia , Idoso , Animais , Progressão da Doença , Epiderme/imunologia , Epiderme/patologia , Feminino , Humanos , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transplante de Neoplasias , Pele/patologia , Neoplasias Cutâneas/patologia
13.
Oncoimmunology ; 6(6): e1320626, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680756

RESUMO

Immune checkpoint inhibitors have significantly improved the treatment of several cancers. T-cell infiltration and the number of neoantigens caused by tumor-specific mutations are correlated to favorable responses in cancers with a high mutation load. Accordingly, checkpoint immunotherapy is thought to be less effective in tumors with low mutation frequencies such as neuroblastoma, a neuroendocrine tumor of early childhood with poor outcome of the high-risk disease group. However, spontaneous regressions and paraneoplastic syndromes seen in neuroblastoma patients suggest substantial immunogenicity. Using an integrative transcriptomic approach, we investigated the molecular characteristics of T-cell infiltration in primary neuroblastomas as an indicator of pre-existing immune responses and potential responsiveness to checkpoint inhibition. Here, we report that a T-cell-poor microenvironment in primary metastatic neuroblastomas is associated with genomic amplification of the MYCN (N-Myc) proto-oncogene. These tumors exhibited lower interferon pathway activity and chemokine expression in line with reduced immune cell infiltration. Importantly, we identified a global role for N-Myc in the suppression of interferon and pro-inflammatory pathways in human and murine neuroblastoma cell lines. N-Myc depletion potently enhanced targeted interferon pathway activation by a small molecule agonist of the cGAS-STING innate immune pathway. This promoted chemokine expression including Cxcl10 and T-cell recruitment in microfluidics migration assays. Hence, our data suggest N-Myc inhibition plus targeted IFN activation as adjuvant strategy to enforce cytotoxic T-cell recruitment in MYCN-amplified neuroblastomas.

14.
Genes Dev ; 31(1): 18-33, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096186

RESUMO

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.


Assuntos
Plasticidade Celular/genética , Reprogramação Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Biossíntese de Proteínas/genética , Animais , Microambiente Celular , Evolução Molecular , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutamina/farmacologia , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Invasividade Neoplásica/genética , Crista Neural/citologia , Fenótipo , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia
15.
Nat Commun ; 6: 10156, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26658454

RESUMO

Despite the discovery of heterotrimeric αßγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq.


Assuntos
Depsipeptídeos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Ardisia/química , Linhagem Celular Tumoral , Depsipeptídeos/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Melanoma/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Isoformas de Proteínas , Transdução de Sinais , Cauda/irrigação sanguínea , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...