Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116723, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723514

RESUMO

The growth of antibiotic resistance to antifungal drugs contributes to the search for new ways to enhance their effectiveness and reduce toxicity. The undeniable advantage of polyene macrolide antibiotic amphotericin B (AmB) which ensures low pathogen resistance is its mechanism of action related to the formation of transmembrane pores in target lipid membranes. Here, we investigated the effects of plant flavones, chrysin, wogonin, baicalein, apigenin, scutellarein, luteolin, morin and fisetin on the pore-forming activity of AmB in the sterol-enriched membranes by electrophysiological assays. Сhrysin, wogonin, baicalein, apigenin, scutellarein, and luteolin were shown to decrease the AmB pore-forming activity in the bilayers composed of palmitoyloleylphosphocholine independently of their sterol composition. Morin and fisetin led to the increase and decrease in the AmB pore-forming activity in the ergosterol- and cholesterol-containing bilayers respectively. Differential scanning microcalorimetry of the gel-to-liquid crystalline phase transition of membrane forming lipids, molecular dynamics simulations, and absorbance spectroscopy revealed the possibility of direct interactions between AmB and some flavones in the water and/or in the lipid bilayer. The influence of these interactions on the antibiotic partitioning between aqueous solution and membrane and/or its transition between different states in the bilayer was discussed.

2.
Pharmaceutics ; 16(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794328

RESUMO

BACKGROUND: The threat of antibiotic resistance of fungal pathogens and the high toxicity of the most effective drugs, polyene macrolides, force us to look for new ways to develop innovative antifungal formulations. OBJECTIVE: The aim of this study was to determine how the sterol, phospholipid, and flavonoid composition of liposomal forms of polyene antibiotics, and in particular, amphotericin B (AmB), affects their ability to increase the permeability of lipid bilayers that mimic the membranes of mammalian and fungal cells. METHODS: To monitor the membrane permeability induced by various polyene-based lipid formulations, a calcein leakage assay and the electrophysiological technique based on planar lipid bilayers were used. KEY RESULTS: The replacement of cholesterol with its biosynthetic precursor, 7-dehydrocholesterol, led to a decrease in the ability of AmB-loaded liposomes to permeabilize lipid bilayers mimicking mammalian cell membranes. The inclusion of plant flavonoid phloretin in AmB-loaded liposomes increased the ability of the formulation to disengage a fluorescent marker from lipid vesicles mimicking the membranes of target fungi. I-V characteristics of the fungal-like lipid bilayers treated with the AmB phytosomes were symmetric, demonstrating the functioning of double-length AmB pores and assuming a decrease in the antibiotic threshold concentration. CONCLUSIONS AND PERSPECTIVES: The therapeutic window of polyene lipid formulations might be expanded by varying their sterol composition. Polyene-loaded phytosomes might be considered as the prototypes for innovative lipid antibiotic formulations.

3.
J Nat Prod ; 87(4): 664-674, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38362867

RESUMO

We report the molecular mechanism of action of gausemycins and the isolation of new members of the family, gausemycins C (1c), D (1d), E (1e), and F (1f), the minor components of the mixture. To elucidate the mechanism of action of gausemycins, we investigated the antimicrobial activity of the most active compounds, gausemycins A and B, in the presence of Ca2+, other metal ions, and phosphate. Gausemycins require a significantly higher Ca2+ concentration for maximum activity than daptomycin but lower than that required for malacidine and cadasides. Species-specific antimicrobial activity was found upon testing against a wide panel of Gram-positive bacteria. Membranoactivity of gausemycins was demonstrated upon their interactions with model lipid bilayers and micelles. The pore-forming ability was found to be dramatically dependent on the Ca2+ concentration and the membrane lipid composition. An NMR study of gausemycin B in zwitterionic and anionic micelles suggested the putative structure of the gausemycin/membrane complex and revealed the binding of Ca2+ by the macrocyclic domain of the antibiotic.


Assuntos
Antibacterianos , Cálcio , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Cálcio/metabolismo , Estrutura Molecular , Bactérias Gram-Positivas/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Daptomicina/farmacologia , Daptomicina/química , Bicamadas Lipídicas/química , Micelas
4.
Antibiotics (Basel) ; 12(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136750

RESUMO

One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.

5.
Sci Rep ; 13(1): 19233, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932471

RESUMO

70 kDa heat shock protein Hsp70 (also termed HSP70A1A) is the major stress-inducible member of the HSP70 chaperone family, which is present on the plasma membranes of various tumor cells, but not on the membranes of the corresponding normal cells. The exact mechanisms of Hsp70 anchoring in the membrane and its membrane-related functions are still under debate, since the protein does not contain consensus signal sequence responsible for translocation from the cytosol to the lipid bilayer. The present study was focused on the analysis of the interaction of recombinant human Hsp70 with the model phospholipid membranes. We have confirmed that Hsp70 has strong specificity toward membranes composed of negatively charged phosphatidylserine (PS), compared to neutral phosphatidylcholine membranes. Using differential scanning calorimetry, we have shown for the first time that Hsp70 affects the thermotropic behavior of saturated PS and leads to the interdigitation that controls membrane thickness and rigidity. Hsp70-PS interaction depended on the lipid phase state; the protein stabilized ordered domains enriched with high-melting PS, increasing their area, probably due to formation of quasi-interdigitated phase. Moreover, the ability of Hsp70 to form ion-permeable pores in PS membranes may also be determined by the bilayer thickness. These observations contribute to a better understanding of Hsp70-PS interaction and biological functions of membrane-bound Hsp70 in cancer cells.


Assuntos
Bicamadas Lipídicas , Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Bicamadas Lipídicas/química , Proteínas de Choque Térmico HSP70/metabolismo , Membrana Celular/metabolismo , Lecitinas/metabolismo
6.
Membranes (Basel) ; 13(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505036

RESUMO

The macrolide polyene antibiotic amphotericin B (AmB), remains a valuable drug to treat systemic mycoses due to its wide antifungal activity and low probability of developing resistance. The high toxicity of AmB, expressed in nephropathy and hemolysis, could be partially resolved by lowering therapeutic AmB concentration while maintaining efficacy. This work discusses the possibility of using plant polyphenols and alkaloids to enhance the pore-forming and consequently antifungal activity of AmB. We demonstrated that phloretin, phlorizin, naringenin, taxifolin, quercetin, biochanin A, genistein, resveratrol, and quinine led to an increase in the integral AmB-induced transmembrane current in the bilayers composed of palmitoyloleoylphosphocholine and ergosterol, while catechin, colchicine, and dihydrocapsaicin did not practically change the AmB activity. Cardamonin, 4'-hydroxychalcone, licochalcone A, butein, curcumin, and piperine inhibited AmB-induced transmembrane current. Absorbance spectroscopy revealed no changes in AmB membrane concentration with phloretin addition. A possible explanation of the potentiation is related to the phytochemical-produced changes in the elastic membrane properties and the decrease in the energy of formation of the lipid mouth of AmB pores, which is partially confirmed by differential scanning microcalorimetry. The possibility of AmB interaction with cholesterol in the mammalian cell membranes instead of ergosterol in fungal membranes, determines its high toxicity. The replacement of ergosterol with cholesterol in the membrane lipid composition led to a complete loss or a significant decrease in the potentiating effects of tested phytochemicals, indicating low potential toxicity of these compounds and high therapeutic potential of their combinations with the antibiotic. The discovered combinations of AmB with plant molecules that enhance its pore-forming ability in ergosterol-enriched membranes, seem to be promising for further drug development in terms of the toxicity decrease and efficacy improvement.

7.
Membranes (Basel) ; 13(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37103880

RESUMO

Phytochemicals, such as flavonoids, stilbenoids, alkaloids, terpenoids, and related compounds, have a wide range of useful pharmacological properties which cannot be ascribed to binding to a single peptide or protein target alone. Due to the relatively high lipophilicity of phytochemicals, the lipid membrane is thought to mediate their effects via changes in the properties of the lipid matrix, in particular, by modulating the transmembrane distribution of the electrical potential and, consequently, the formation and functioning of the ion channels reconstituted in the lipid bilayers. Therefore, biophysical studies on the interactions between plant metabolites and model lipid membranes are still of interest. This review represents an attempt to provide a critical analysis of a variety of studies on altering membranes and ion channels with phytochemicals via disturbing the potential drop at the membrane-aqueous solution interface. Critical structural motifs and functioning groups in the molecules of plant polyphenols (alkaloids and saponins are identified) and the possible mechanisms of dipole potential modulation with phytochemicals are discussed.

8.
Antiviral Res ; 212: 105575, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868316

RESUMO

With the resurgence of the coronavirus pandemic, the repositioning of FDA-approved drugs against coronovirus and finding alternative strategies for antiviral therapy are both important. We previously identified the viral lipid envelope as a potential target for the prevention and treatment of SARS-CoV-2 infection with plant alkaloids (Shekunov et al., 2021). Here, we investigated the effects of eleven cyclic lipopeptides (CLPs), including well-known antifungal and antibacterial compounds, on the liposome fusion triggered by calcium, polyethylene glycol 8000, and a fragment of SARS-CoV-2 fusion peptide (816-827) by calcein release assays. Differential scanning microcalorimetry of the gel-to-liquid-crystalline and lamellar-to-inverted hexagonal phase transitions and confocal fluorescence microscopy demonstrated the relation of the fusion inhibitory effects of CLPs to alterations in lipid packing, membrane curvature stress and domain organization. The antiviral effects of CLPs were evaluated in an in vitro Vero-based cell model, and aculeacin A, anidulafugin, iturin A, and mycosubtilin attenuated the cytopathogenicity of SARS-CoV-2 without specific toxicity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fusão de Membrana , Antivirais/farmacologia , Antivirais/química , Antirretrovirais/farmacologia , Lipopeptídeos/farmacologia
9.
Nutrients ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904120

RESUMO

This paper discusses the possibility of using plant polyphenols as viral fusion inhibitors with a lipid-mediated mechanism of action. The studied agents are promising candidates for the role of antiviral compounds due to their high lipophilicity, low toxicity, bioavailability, and relative cheapness. Fluorimetry of calcein release at the calcium-mediated fusion of liposomes, composed of a ternary mixture of dioleoyl phosphatidylcholine, dioleoyl phosphatidylglycerol, and cholesterol, in the presence of 4'-hydroxychalcone, cardamonin, isoliquiritigenin, phloretin, resveratrol, piceatannol, daidzein, biochanin A, genistein, genistin, liquiritigenin, naringenin, catechin, taxifolin, and honokiol, was performed. It was found that piceatannol significantly inhibited the calcium-induced fusion of negatively charged vesicles, while taxifolin and catechin showed medium and low antifusogenic activity, respectively. As a rule, polyphenols containing at least two OH-groups in both phenolic rings were able to inhibit the calcium-mediated fusion of liposomes. In addition, there was a correlation between the ability of the tested compounds to inhibit vesicle fusions and to perturb lipid packing. We suggest that the antifusogenic action of polyphenols was determined by the depth of immersion and the orientation of the molecules in the membrane.


Assuntos
Catequina , Estilbenos , Flavonoides/farmacologia , Cálcio , Catequina/farmacologia , Lipossomos , Fusão de Membrana , Hidroxilação , Estilbenos/farmacologia , Polifenóis , Lipídeos
10.
Membranes (Basel) ; 13(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984696

RESUMO

Fusidic acid (FA) is an antibiotic with high activity against Staphylococcus aureus; it has been used in clinical practice since the 1960s. However, the narrow antimicrobial spectrum of FA limits its application in the treatment of bacterial infections. In this regard, this work aims both at the study of the antimicrobial effect of a number of FA amines and at the identification of their potential biological targets. In this way, FA analogues containing aliphatic and aromatic amino groups and biogenic polyamine, spermine and spermidine, moieties at the C-3 atom, were synthesized (20 examples). Pyrazinecarboxamide-substituted analogues exhibit a high antibacterial activity against S. aureus (MRSA) with MIC ≤ 0.25 µg/mL. Spermine and spermidine derivatives, along with activity against S. aureus, also inhibit the growth and reproduction of Gram-negative bacteria Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, and have a high fungicidal effect against Candida albicans and Cryptococcus neoformans. The study of the membrane activity demonstrated that the spermidine- and spermine-containing compounds are able to immerse into membranes and disorder the lipidsleading to a detergent effect. Moreover, spermine-based compounds are also able to form ion-permeable pores in the lipid bilayers mimicking the bacterial membranes. Using molecular docking, inhibition of the protein synthesis elongation factor EF-G was proposed, and polyamine substituents were shown to make the greatest contribution to the stability of the complexes of fusidic acid derivatives with biological targets. This suggests that the antibacterial effect of the obtained compounds may be associated with both membrane activity and inhibition of the elongation factor EF-G.

11.
Antibiotics (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671352

RESUMO

Polyene antifungal amphotericin B (AmB) has been used for over 60 years, and remains a valuable clinical treatment for systemic mycoses, due to its broad antifungal activity and low rate of emerging resistance. There is no consensus on how exactly it kills fungal cells but it is certain that AmB and the closely-related nystatin (Nys) can form pores in membranes and have a higher affinity towards ergosterol than cholesterol. Notably, the high nephro- and hemolytic toxicity of polyenes and their low solubility in water have led to efforts to improve their properties. We present the synthesis of new amphotericin and nystatin amides and a comparative study of the effects of identical modifications of AmB and Nys on the relationship between their structure and properties. Generally, increases in the activity/toxicity ratio were in good agreement with increasing ratios of selective permeabilization of ergosterol- vs. cholesterol-containing membranes. We also show that the introduced modifications had an effect on the sensitivity of mutant yeast strains with alterations in ergosterol biosynthesis to the studied polyenes, suggesting a varying affinity towards intermediate ergosterol precursors. Three new water-soluble nystatin derivatives showed a prominent improvement in safety and were selected as promising candidates for drug development.

12.
ACS Infect Dis ; 9(1): 42-55, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36563312

RESUMO

Natamycin is a macrolide polyene antibiotic, characterized by a potent broad spectrum antifungal activity and low toxicity. However, it is not used for the treatment of systemic mycoses due to its low bioavailability and low solubility in aqueous solutions. In order to create new semisynthetic antifungal agents for treatment of mycoses, a series of water-soluble amides of natamycin were synthesized. Antifungal activities of natamycin derivatives were investigated against Candida spp., including a panel of Candida auris clinical isolates and filamentous fungi. Toxicity for mammalian cells was assayed by monitoring antiproliferative activity against human postnatal fibroblasts (HPF) and human embryonic kidney cells (HEK293). By comparing leakage of contents from ergosterol versus cholesterol containing vesicles, a ratio that characterizes the efficacy and safety of natamycin and its derivatives was determined (EI, efficiency index). Ability of all tested semisynthetic natamycines to prevent proliferation of the yeast Candida spp. cells was comparable or even slightly higher to those of parent antibiotic. Interestingly, amide 8 was more potent than natamycin (1) against all tested C. auris strains (MIC values 2 µg/mL vs 8 µg/mL, respectively). Among 7 derivatives, amide 10 with long lipophilic side chains showed the highest EI and strong antifungal activity in vitro but was more toxic against HPF. In vivo experiments with amide 8 showed in vivo efficacy on a mouse candidemia model with a larger LD50/ED50 ratio in comparison to amphotericin B.


Assuntos
Micoses , Natamicina , Animais , Camundongos , Humanos , Natamicina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Células HEK293 , Polienos/farmacologia , Micoses/tratamento farmacológico , Candida , Saccharomyces cerevisiae , Mamíferos
13.
Membranes (Basel) ; 12(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36422158

RESUMO

This study was focused on the action of lantibiotic nisin on the phospholipid membranes. Nisin did not produce ion-permeable pores in the membranes composed of DOPC or DOPE. The introduction of DOPS into bilayer lipid composition led to a decrease in the threshold detergent concentration of nisin. An addition of nisin to DOPG- and TOCL-enriched bilayers caused the formation of well-defined ion pores of various conductances. The transmembrane macroscopic current increased with the second power of the lantibiotic aqueous concentration, suggesting that the dimer of nisin was at least involved in the formation of conductive subunit. The pore-forming ability of lantibiotic decreased in the series: DOPC/TOCL ≈ DOPE/TOCL >> DOPC/DOPG ≥ DOPE/DOPG. The preferential interaction of nisin to cardiolipin-enriched bilayers might explain its antitumor activity by pore-formation in mitochondrial membranes. Small natural molecules, phloretin and capsaicin, were found to potentiate the membrane activity of nisin in the TOCL-containing membranes. The effect was referred to as changes in the membrane boundary potential at the adsorption of small molecules. We concluded that the compounds diminishing the membrane boundary potential should be considered as the potentiator of the nisin pore-forming ability that can be used to develop innovative formulations for anticancer therapy.

14.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232854

RESUMO

Herein, we report that chromone-containing allylmorpholines can affect ion channels formed by pore-forming antibiotics in model lipid membranes, which correlates with their ability to influence membrane boundary potential and lipid-packing stress. At 100 µg/mL, allylmorpholines 1, 6, 7, and 8 decrease the boundary potential of the bilayers composed of palmitoyloleoylphosphocholine (POPC) by about 100 mV. At the same time, the compounds do not affect the zeta-potential of POPC liposomes, but reduce the membrane dipole potential by 80-120 mV. The allylmorpholine-induced drop in the dipole potential produce 10-30% enhancement in the conductance of gramicidin A channels. Chromone-containing allylmorpholines also affect the thermotropic behavior of dipalmytoylphosphocholine (DPPC), abolishing the pretransition, lowering melting cooperativity, and turning the main phase transition peak into a multicomponent profile. Compounds 4, 6, 7, and 8 are able to decrease DPPC's melting temperature by about 0.5-1.9 °C. Moreover, derivative 7 is shown to increase the temperature of transition of palmitoyloleoylphosphoethanolamine from lamellar to inverted hexagonal phase. The effects on lipid-phase transitions are attributed to the changes in the spontaneous curvature stress. Alterations in lipid packing induced by allylmorpholines are believed to potentiate the pore-forming ability of amphotericin B and gramicidin A by several times.


Assuntos
Gramicidina , Bicamadas Lipídicas , Anfotericina B , Antibacterianos , Cromonas/farmacologia , Gramicidina/metabolismo , Gramicidina/farmacologia , Canais Iônicos , Lipossomos
15.
Antibiotics (Basel) ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290103

RESUMO

The ability of polymyxin B, an antibiotic used to treat infections caused by multidrug-resistant Gram-negative bacteria as a last-line therapeutic option, to form ion pores in model membranes composed of various phospholipids and lipopolysaccharides was studied. Our data demonstrate that polymyxin B predominantly interacts with negatively charged lipids. Susceptibility decreases as follows: Kdo2-Lipid A >> DOPG ≈ DOPS >> DPhPG ≈ TOCL ≈ Lipid A. The dimer and hexamer of polymyxin B are involved in the pore formation in DOPG(DOPS)- and Kdo2-Lipid A-enriched bilayers, respectively. The pore-forming ability of polymyxin B significantly depends on the shape of membrane lipids, which indicates that the antibiotic produces toroidal lipopeptide-lipid pores. Small amphiphilic molecules diminishing the membrane dipole potential and inducing positive curvature stress were shown to be agonists of pore formation by polymyxin B and might be used to develop innovative lipopeptide-based formulations.

16.
Membranes (Basel) ; 11(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832122

RESUMO

Although phosphodiesterase type 5 inhibitors are widely used and well-studied drugs, the potential benefits of their application in the treatment of various diseases and new drug delivery systems, including liposome forms, are still being discussed. In this regard, the role of the lipid matrix of cell membranes in the pharmacological action of the inhibitors is of special interest. It was shown that sildenafil, vardenafil, and tadalafil caused a significant decrease in the boundary potential of model membranes composed of palmitoyloleoylphosphatidylcholine or its mixture with cholesterol, by 70-80 mV. The reduction in the membrane dipole potential induced by inhibitors led to a 20-25% increase in the conductance of cation-selective pores formed by the antimicrobial peptide gramicidin A. The addition of sildenafil or vardenafil also led to a significant decrease in the temperature of the main phase transition of dipalmytoylphosphatidylcholine, by about 1.5 °C, while tadalafil did not change the melting temperature. Sildenafil, vardenafil, and tadalafil enhanced the pore-forming activity of the antifungal polyene antibiotic nystatin by 11, 13, and 2 times, respectively. This fact might indicate the induction of membrane curvature stress by the inhibitors. The data obtained might be of special interest for the development of lipid-mediated forms of drugs.

17.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681725

RESUMO

Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2-3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1-1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2-6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu-organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu-organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2-. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.


Assuntos
Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cobre/química , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipossomos/química , Lipossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Oxirredução , Superóxidos/metabolismo
18.
Biomedicines ; 9(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34680551

RESUMO

To rationalize the antiviral actions of plant alkaloids, the ability of 20 compounds to inhibit calcium-mediated fusion of lipid vesicles composed of phosphatidylglycerol and cholesterol was investigated using the calcein release assay and dynamic light scattering. Piperine, tabersonine, hordenine, lupinine, quinine, and 3-isobutyl-1-methylxanthine demonstrated the most potent effects (inhibition index greater than 50%). The introduction of phosphatidylcholine into the phosphatidylglycerol/cholesterol mixture led to significant changes in quinine, hordenine, and 3-isobutyl-1-methylxanthine efficiency. Comparison of the fusion inhibitory ability of the tested alkaloids, and the results of the measurements of alkaloid-induced alterations in the physical properties of model membranes indicated a potent relationship between a decrease in the cooperativity of the phase transition of lipids and the ability of alkaloids to prevent calcium-mediated vesicle fusion. In order to use this knowledge to combat the novel coronavirus pandemic, the ability of the most effective compounds to suppress membrane fusion induced by fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides was studied using the calcein release assay and confocal fluorescence microscopy. Piperine was shown to inhibit vesicle fusion mediated by both coronavirus peptides. Moreover, piperine was shown to significantly reduce the titer of SARS-CoV2 progeny in vitro in Vero cells when used in non-toxic concentrations.

19.
Angew Chem Int Ed Engl ; 60(34): 18694-18703, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34009717

RESUMO

We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.


Assuntos
Lipoglicopeptídeos/isolamento & purificação , Streptomyces/química , Lipoglicopeptídeos/química , Conformação Molecular
20.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804648

RESUMO

This study was focused on the molecular mechanisms of action of saponins and related compounds (sapogenins and alkaloids) on model lipid membranes. Steroids and triterpenes were tested. A systematic analysis of the effects of these chemicals on the physicochemical properties of the lipid bilayers and on the formation and functionality of the reconstituted ion channels induced by antimicrobial agents was performed. It was found that digitonin, tribulosin, and dioscin substantially reduced the boundary potential of the phosphatidylcholine membranes. We concluded that saponins might affect the membrane boundary potential by restructuring the membrane hydration layer. Moreover, an increase in the conductance and lifetime of gramicidin A channels in the presence of tribulosin was due to an alteration in the membrane dipole potential. Differential scanning microcalorimetry data indicated the key role of the sapogenin core structure (steroid or triterpenic) in affecting lipid melting and disordering. We showed that an alteration in pore forming activity of syringomycin E by dioscin might be due to amendments in the lipid packing. We also found that the ability of saponins to disengage the fluorescent marker calcein from lipid vesicles might be also determined by their ability to induce a positive curvature stress.


Assuntos
Membrana Celular/efeitos dos fármacos , Lipídeos de Membrana/química , Saponinas/farmacologia , Membrana Celular/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/química , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Lipídeos de Membrana/antagonistas & inibidores , Potenciais da Membrana/efeitos dos fármacos , Estrutura Molecular , Transição de Fase/efeitos dos fármacos , Saponinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...