Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38952134

RESUMO

OBJECTIVE: The dentato-thalamo-cortical tract (DTT) is the main cerebellar efferent pathway. Degeneration of the DTT is a core feature of Friedreich ataxia (FRDA). However, it remains unclear whether DTT disruption is spatially specific, with some segments being more impacted than others. This study aimed to investigate microstructural integrity along the DTT in FRDA using a profilometry diffusion MRI (dMRI) approach. METHODS: MRI data from 45 individuals with FRDA (mean age: 33.2 ± 13.2, Male/Female: 26/19) and 37 healthy controls (mean age: 36.5 ± 12.7, Male/Female:18/19) were included in this cross-sectional multicenter study. A profilometry analysis was performed on dMRI data by first using tractography to define the DTT as the white matter pathway connecting the dentate nucleus to the contralateral motor cortex. The tract was then divided into 100 segments, and dMRI metrics of microstructural integrity (fractional anisotropy, mean diffusivity and radial diffusivity) at each segment were compared between groups. The process was replicated on the arcuate fasciculus for comparison. RESULTS: Across all diffusion metrics, the region of the DTT connecting the dentate nucleus and thalamus was more impacted in FRDA than downstream cerebral sections from the thalamus to the cortex. The arcuate fasciculus was minimally impacted. INTERPRETATION: Our study further expands the current knowledge about brain involvement in FRDA, showing that microstructural abnormalities within the DTT are weighted to early segments of the tract (i.e., the superior cerebellar peduncle). These findings are consistent with the hypothesis of DTT undergoing anterograde degeneration arising from the dentate nuclei and progressing to the primary motor cortex.

2.
Insights Imaging ; 15(1): 146, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886297

RESUMO

Chronic liver disease is responsible for significant morbidity and mortality worldwide. Abdominal computed tomography (CT) and magnetic resonance imaging (MRI) can fully visualise the liver and adjacent structures in the upper abdomen providing a reproducible assessment of the liver and biliary system and can detect features of portal hypertension. Subjective interpretation of CT and MRI in the assessment of liver parenchyma for early and advanced stages of fibrosis (pre-cirrhosis), as well as severity of portal hypertension, is limited. Quantitative and reproducible measurements of hepatic and splenic volumes have been shown to correlate with fibrosis staging, clinical outcomes, and mortality. In this review, we will explore the role of volumetric measurements in relation to diagnosis, assessment of severity and prediction of outcomes in chronic liver disease patients. We conclude that volumetric analysis of the liver and spleen can provide important information in such patients, has the potential to stratify patients' stage of hepatic fibrosis and disease severity, and can provide critical prognostic information. CRITICAL RELEVANCE STATEMENT: This review highlights the role of volumetric measurements of the liver and spleen using CT and MRI in relation to diagnosis, assessment of severity, and prediction of outcomes in chronic liver disease patients. KEY POINTS: Volumetry of the liver and spleen using CT and MRI correlates with hepatic fibrosis stages and cirrhosis. Volumetric measurements correlate with chronic liver disease outcomes. Fully automated methods for volumetry are required for implementation into routine clinical practice.

3.
Mol Psychiatry ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862674

RESUMO

Visual alterations under classic psychedelics can include rich phenomenological accounts of eyes-closed imagery. Preclinical evidence suggests agonism of the 5-HT2A receptor may reduce synaptic gain to produce psychedelic-induced imagery. However, this has not been investigated in humans. To infer the directed connectivity changes to visual connectivity underlying psychedelic visual imagery in healthy adults, a double-blind, randomised, placebo-controlled, cross-over study was performed, and dynamic causal modelling was applied to the resting state eyes-closed functional MRI scans of 24 subjects after administration of 0.2 mg/kg of the serotonergic psychedelic drug, psilocybin (magic mushrooms), or placebo. The effective connectivity model included the early visual area, fusiform gyrus, intraparietal sulcus, and inferior frontal gyrus. We observed a pattern of increased self-inhibition of both early visual and higher visual-association regions under psilocybin that was consistent with preclinical findings. We also observed a pattern of reduced inhibition from visual-association regions to earlier visual areas that indicated top-down connectivity is enhanced during visual imagery. The results were analysed with behavioural measures taken immediately after the scans, suggesting psilocybin-induced decreased sensitivity to neural inputs is associated with the perception of eyes-closed visual imagery. The findings inform our basic and clinical understanding of visual perception. They reveal neural mechanisms that, by affecting balance, may increase the impact of top-down feedback connectivity on perception, which could contribute to the visual imagery seen with eyes-closed during psychedelic experiences.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38858799

RESUMO

OBJECTIVE: Extracellular volume fraction (fECV) and liver and spleen size have been correlated with liver fibrosis stages and cirrhosis. The purpose of the current study was to determine the predictive value of fECV alone and in conjunction with measurement of liver and spleen size for severity of liver fibrosis. METHODS: This was a retrospective study of 95 subjects (65 with liver biopsy and 30 controls). Spearman rank correlation coefficient was used to assess correlation between radiological markers and fibrosis stage. Receiver operating characteristic analysis was performed to assess the discriminative ability of radiological markers for significant (F2+) and advanced (F3+) fibrosis and cirrhosis (F4), by reporting the area under the curve (AUC). RESULTS: The cohort had a mean age of 51.4 ± 14.4 years, and 52 were female (55%). There were 36, 5, 6, 9, and 39 in fibrosis stages F0, F1, F2, F3, and F4, respectively. Spleen volume alone showed the highest correlation (r = 0.552, P < 0.001) and AUCs of 0.823, 0.807, and 0.785 for identification of significant and advanced fibrosis and cirrhosis, respectively. Adding fECV to spleen length improved AUCs (0.764, 0.745, and 0.717 to 0.812, 0.781, and 0.738, respectively) compared with splenic length alone. However, adding fECV to spleen volume did not improve the AUCs for significant or advanced fibrosis or cirrhosis. CONCLUSIONS: Spleen size (measured in length or volume) showed better correlation with liver fibrosis stages compared with fECV. The combination of fECV and spleen length had higher accuracy compared with fECV alone or spleen length alone.

5.
Sci Rep ; 14(1): 14574, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914735

RESUMO

Rising rates of insulin resistance and an ageing population are set to exact an increasing toll on individuals and society. Here we examine the contribution of age and insulin resistance to the association of cerebral blood flow and glucose metabolism; both critical process in the supply of energy for the brain. Thirty-four younger (20-42 years) and 41 older (66-86 years) healthy adults underwent a simultaneous resting state MR/PET scan, including arterial spin labelling. Rates of cerebral blood flow and glucose metabolism were derived using a functional atlas of 100 brain regions. Older adults had lower cerebral blood flow than younger adults in 95 regions, reducing to 36 regions after controlling for cortical atrophy and blood pressure. Lower cerebral blood flow was also associated with worse working memory and slower reaction time in tasks requiring cognitive flexibility and response inhibition. Younger and older insulin sensitive adults showed small, negative correlations between relatively high rates of regional cerebral blood flow and glucose metabolism. This pattern was inverted in insulin resistant older adults, who showed hypoperfusion and hypometabolism across the cortex, and a positive correlation. In insulin resistant younger adults, the association showed inversion to positive correlations, although not to the extent seen in older adults. Our findings suggest that the normal course of ageing and insulin resistance alter the rates of and associations between cerebral blood flow and glucose metabolism. They underscore the criticality of insulin sensitivity to brain health across the adult lifespan.


Assuntos
Envelhecimento , Circulação Cerebrovascular , Glucose , Resistência à Insulina , Humanos , Idoso , Adulto , Circulação Cerebrovascular/fisiologia , Masculino , Feminino , Envelhecimento/metabolismo , Idoso de 80 Anos ou mais , Glucose/metabolismo , Adulto Jovem , Imageamento por Ressonância Magnética , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
6.
Mov Disord ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644761

RESUMO

BACKGROUND: The dentate nuclei of the cerebellum are key sites of neuropathology in Friedreich ataxia (FRDA). Reduced dentate nucleus volume and increased mean magnetic susceptibility, a proxy of iron concentration, have been reported by magnetic resonance imaging studies in people with FRDA. Here, we investigate whether these changes are regionally heterogeneous. METHODS: Quantitative susceptibility mapping data were acquired from 49 people with FRDA and 46 healthy controls. The dentate nuclei were manually segmented and analyzed using three dimensional vertex-based shape modeling and voxel-based assessments to identify regional changes in morphometry and susceptibility, respectively. RESULTS: Individuals with FRDA, relative to healthy controls, showed significant bilateral surface contraction most strongly at the rostral and caudal boundaries of the dentate nuclei. The magnitude of this surface contraction correlated with disease duration, and to a lesser extent, ataxia severity. Significantly greater susceptibility was also evident in the FRDA cohort relative to controls, but was instead localized to bilateral dorsomedial areas, and also correlated with disease duration and ataxia severity. CONCLUSIONS: Changes in the structure of the dentate nuclei in FRDA are not spatially uniform. Atrophy is greatest in areas with high gray matter density, whereas increases in susceptibility-reflecting iron concentration, demyelination, and/or gliosis-predominate in the medial white matter. These findings converge with established histological reports and indicate that regional measures of dentate nucleus substructure are more sensitive measures of disease expression than full-structure averages. Biomarker development and therapeutic strategies that directly target the dentate nuclei, such as gene therapies, may be optimized by targeting these areas of maximal pathology. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

7.
Biol Psychiatry ; 96(1): 57-66, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185235

RESUMO

BACKGROUND: Serotonergic psychedelics, such as psilocybin, alter perceptual and cognitive systems that are functionally integrated with the amygdala. These changes can alter cognition and emotions that are hypothesized to contribute to their therapeutic utility. However, the neural mechanisms of cognitive and subcortical systems altered by psychedelics are not well understood. METHODS: We used resting-state functional magnetic resonance images collected during a randomized, double-blind, placebo-controlled clinical trial of 24 healthy adults under 0.2 mg/kg psilocybin to estimate the directed (i.e., effective) changes between the amygdala and 3 large-scale resting-state networks involved in cognition. These networks are the default mode network, the salience network, and the central executive network. RESULTS: We found a pattern of decreased top-down effective connectivity from these resting-state networks to the amygdala. Effective connectivity decreased within the default mode network and salience network but increased within the central executive network. These changes in effective connectivity were statistically associated with behavioral measures of altered cognition and emotion under the influence of psilocybin. CONCLUSIONS: Our findings suggest that temporary amygdala signal attenuation is associated with mechanistic changes to resting-state network connectivity. These changes are significant for altered cognition and perception and suggest targets for research investigating the efficacy of psychedelic therapy for internalizing psychiatric disorders. More broadly, our study suggests the value of quantifying the brain's hierarchical organization using effective connectivity to identify important mechanisms for basic cognitive function and how they are integrated to give rise to subjective experiences.


Assuntos
Tonsila do Cerebelo , Cognição , Emoções , Alucinógenos , Imageamento por Ressonância Magnética , Rede Nervosa , Psilocibina , Humanos , Psilocibina/farmacologia , Psilocibina/administração & dosagem , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Masculino , Adulto , Alucinógenos/farmacologia , Alucinógenos/administração & dosagem , Método Duplo-Cego , Feminino , Cognição/efeitos dos fármacos , Emoções/efeitos dos fármacos , Emoções/fisiologia , Adulto Jovem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Vias Neurais/efeitos dos fármacos , Vias Neurais/diagnóstico por imagem , Rede de Modo Padrão/efeitos dos fármacos , Rede de Modo Padrão/diagnóstico por imagem , Descanso , Conectoma
8.
Nat Methods ; 21(5): 804-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191935

RESUMO

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.


Assuntos
Neuroimagem , Software , Neuroimagem/métodos , Humanos , Interface Usuário-Computador , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem
9.
Comput Biol Med ; 168: 107775, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061154

RESUMO

Deep learning MRI reconstruction methods are often based on Convolutional neural network (CNN) models; however, they are limited in capturing global correlations among image features due to the intrinsic locality of the convolution operation. Conversely, the recent vision transformer models (ViT) are capable of capturing global correlations by applying self-attention operations on image patches. Nevertheless, the existing transformer models for MRI reconstruction rarely leverage the physics of MRI. In this paper, we propose a novel physics-based transformer model titled, the Multi-branch Cascaded Swin Transformers (McSTRA) for robust MRI reconstruction. McSTRA combines several interconnected MRI physics-related concepts with the Swin transformers: it exploits global MRI features via the shifted window self-attention mechanism; it extracts MRI features belonging to different spectral components via a multi-branch setup; it iterates between intermediate de-aliasing and data consistency via a cascaded network with intermediate loss computations; furthermore, we propose a point spread function-guided positional embedding generation mechanism for the Swin transformers which exploit the spread of the aliasing artifacts for effective reconstruction. With the combination of all these components, McSTRA outperforms the state-of-the-art methods while demonstrating robustness in adversarial conditions such as higher accelerations, noisy data, different undersampling protocols, out-of-distribution data, and abnormalities in anatomy.


Assuntos
Aceleração , Artefatos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
10.
Mov Disord ; 39(2): 370-379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37927246

RESUMO

BACKGROUND: The neurological phenotype of Friedreich ataxia (FRDA) is characterized by neurodegeneration and neuroinflammation in the cerebellum and brainstem. Novel neuroimaging approaches quantifying brain free-water using diffusion magnetic resonance imaging (dMRI) are potentially more sensitive to these processes than standard imaging markers. OBJECTIVES: To quantify the extent of free-water and microstructural change in FRDA-relevant brain regions using neurite orientation dispersion and density imaging (NODDI), and bitensor diffusion tensor imaging (btDTI). METHOD: Multi-shell dMRI was acquired from 14 individuals with FRDA and 14 controls. Free-water measures from NODDI (FISO) and btDTI (FW) were compared between groups in the cerebellar cortex, dentate nuclei, cerebellar peduncles, and brainstem. The relative sensitivity of the free-water measures to group differences was compared to microstructural measures of NODDI intracellular volume, free-water corrected fractional anisotropy, and conventional uncorrected fractional anisotropy. RESULTS: In individuals with FRDA, FW was elevated in the cerebellar cortex, peduncles (excluding middle), dentate, and brainstem (P < 0.005). FISO was elevated primarily in the cerebellar lobules (P < 0.001). On average, FW effect sizes were larger than all other markers (mean ηρ 2 = 0.43), although microstructural measures also had very large effects in the superior and inferior cerebellar peduncles and brainstem (ηρ 2 > 0.37). Across all regions and metrics, effect sizes were largest in the superior cerebellar peduncles (ηρ 2 > 0.46). CONCLUSIONS: Multi-compartment diffusion measures of free-water and neurite integrity distinguish FRDA from controls with large effects. Free-water magnitude in the brainstem and cerebellum provided the greatest distinction between groups. This study supports further applications of multi-compartment diffusion modeling, and investigations of free-water as a measure of disease expression and progression in FRDA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Transtornos dos Movimentos , Substância Branca , Humanos , Ataxia de Friedreich/diagnóstico por imagem , Ataxia de Friedreich/patologia , Imagem de Tensor de Difusão/métodos , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtornos dos Movimentos/patologia , Substância Branca/diagnóstico por imagem , Água , Imageamento por Ressonância Magnética
11.
Sci Rep ; 13(1): 21183, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040835

RESUMO

Low-field portable magnetic resonance imaging (MRI) scanners are more accessible, cost-effective, sustainable with lower carbon emissions than superconducting high-field MRI scanners. However, the images produced have relatively poor image quality, lower signal-to-noise ratio, and limited spatial resolution. This study develops and investigates an image-to-image translation deep learning model, LoHiResGAN, to enhance the quality of low-field (64mT) MRI scans and generate synthetic high-field (3T) MRI scans. We employed a paired dataset comprising T1- and T2-weighted MRI sequences from the 64mT and 3T and compared the performance of the LoHiResGAN model with other state-of-the-art models, including GANs, CycleGAN, U-Net, and cGAN. Our proposed method demonstrates superior performance in terms of image quality metrics, such as normalized root-mean-squared error, structural similarity index measure, peak signal-to-noise ratio, and perception-based image quality evaluator. Additionally, we evaluated the accuracy of brain morphometry measurements for 33 brain regions across the original 3T, 64mT, and synthetic 3T images. The results indicate that the synthetic 3T images created using our proposed LoHiResGAN model significantly improve the image quality of low-field MRI data compared to other methods (GANs, CycleGAN, U-Net, cGAN) and provide more consistent brain morphometry measurements across various brain regions in reference to 3T. Synthetic images generated by our method demonstrated high quality both quantitatively and qualitatively. However, additional research, involving diverse datasets and clinical validation, is necessary to fully understand its applicability for clinical diagnostics, especially in settings where high-field MRI scanners are less accessible.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Benchmarking , Carbono , Processamento de Imagem Assistida por Computador/métodos
12.
BMJ Neurol Open ; 5(2): e000541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920607

RESUMO

Introduction: Cerebrovascular disease and neurodegeneration are causes of cognitive decline and dementia, for which primary prevention options are currently lacking. Statins are well-tolerated and widely available medications that potentially have neuroprotective effects. The STAREE-Mind Imaging Study is a randomised, double-blind, placebo-controlled clinical trial that will investigate the impact of atorvastatin on markers of neurovascular health and brain atrophy in a healthy, older population using MRI. This is a nested substudy of the 'Statins for Reducing Events in the Elderly' (STAREE) primary prevention trial. Methods: Participants aged 70 years or older (n=340) will be randomised to atorvastatin or placebo. Comprehensive brain MRI assessment will be undertaken at baseline and up to 4 years follow-up, including structural, diffusion, perfusion and susceptibility imaging. The primary outcome measures will be change in brain free water fraction (a composite marker of vascular leakage, neuroinflammation and neurodegeneration) and white matter hyperintensity volume (small vessel disease). Secondary outcomes will include change in perivascular space volume (glymphatic drainage), cortical thickness, hippocampal volume, microbleeds and lacunae, prefrontal cerebral perfusion and white matter microstructure. Ethics and dissemination: Academic publications from this work will address the current uncertainty regarding the impact of statins on brain structure and vascular integrity. This study will inform the utility of repurposing these well-tolerated, inexpensive and widely available drugs for primary prevention of neurological outcomes in older individuals. Ethics approval was given by Monash University Human Research Ethics Committee, Protocol 12206. Trial registration number: ClinicalTrials.gov Identifier: NCT05586750.

13.
Psychiatry Res Neuroimaging ; 335: 111717, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751638

RESUMO

Mapping the spatiotemporal progression of neuroanatomical change in Huntington's Disease (HD) is fundamental to the development of bio-measures for prognostication. Statistical shape analysis to measure the striatum has been performed in HD, however there have been a limited number of longitudinal studies. To address these limitations, we utilised the Spherical Harmonic Point Distribution Method (SPHARM-PDM) to generate point distribution models of the striatum in individuals, and used linear mixed models to test for localised shape change over time in pre-manifest HD (pre-HD), symp-HD (symp-HD) and control individuals. Longitudinal MRI scans from the IMAGE-HD study were used (baseline, 18 and 30 months). We found significant differences in the shape of the striatum between groups. Significant group-by-time interaction was observed for the putamen bilaterally, but not for caudate. A differential rate of shape change between groups over time was observed, with more significant deflation in the symp-HD group in comparison with the pre-HD and control groups. CAG repeats were correlated with bilateral striatal shape in pre-HD and symp-HD. Robust statistical analysis of the correlates of striatal shape change in HD has confirmed the suitability of striatal morphology as a potential biomarker correlated with CAG-repeat length, and potentially, an endophenotype.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Corpo Estriado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Putamen , Estudos Longitudinais
14.
Psychiatry Res Neuroimaging ; 335: 111694, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598529

RESUMO

While striatal changes in Huntington's Disease (HD) are well established, few studies have investigated changes in the hippocampus, a key neuronal hub. Using MRI scans obtained from the IMAGE-HD study, hippocampi were manually traced and then analysed with the Spherical Harmonic Point Distribution Method (SPHARM-PDM) in 36 individuals with presymptomatic-HD, 37 with early symptomatic-HD, and 36 healthy matched controls. There were no significant differences in overall hippocampal volume between groups. Interestingly we found decreased bilateral hippocampal volume in people with symptomatic-HD who took selective serotonin reuptake inhibitors compared to those who did not, despite no significant differences in anxiety, depressive symptoms, or motor incapacity between the two groups. In symptomatic-HD, there was also significant shape deflation in the right hippocampal head, showing the utility of using manual tracing and SPHARM-PDM to characterise subtle shape changes which may be missed by other methods. This study confirms previous findings of the lack of hippocampal volumetric differentiation in presymptomatic-HD and symptomatic-HD compared to controls. We also find novel shape and volume findings in those with symptomatic-HD, especially in relation to decreased hippocampal volume in those treated with SSRIs.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Corpo Estriado , Neurônios , Hipocampo/diagnóstico por imagem
15.
J Neurol ; 270(5): 2360-2369, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36859626

RESUMO

Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease characterised in most cases by progressive and debilitating motor dysfunction. Degeneration of cerebellar white matter pathways have been previously reported, alongside indications of cerebello-cerebral functional alterations. In this work, we examine resting-state functional connectivity changes within cerebello-cerebral circuits, and their associations with disease severity (Scale for the Assessment and Rating of Ataxia [SARA]), psychomotor function (speeded and paced finger tapping), and white matter integrity (diffusion tensor imaging) in 35 adults with FRDA and 45 age and sex-matched controls. Voxel-wise seed-based functional connectivity was assessed for three cerebellar cortical regions (anterior lobe, lobules I-V; superior posterior lobe, lobules VI-VIIB; inferior posterior lobe, lobules VIIIA-IX) and two dentate nucleus seeds (dorsal and ventral). Compared to controls, people with FRDA showed significantly reduced connectivity between the anterior cerebellum and bilateral pre/postcentral gyri, and between the superior posterior cerebellum and left dorsolateral PFC. Greater disease severity correlated with lower connectivity in these circuits. Lower anterior cerebellum-motor cortex functional connectivity also correlated with slower speeded finger tapping and less fractional anisotropy in the superior cerebellar peduncles, internal capsule, and precentral white matter in the FRDA cohort. There were no significant between-group differences in inferior posterior cerebellar or dentate nucleus connectivity. This study indicates that altered cerebello-cerebral functional connectivity is associated with functional status and white matter damage in cerebellar efferent pathways in people with FRDA, particularly in motor circuits.


Assuntos
Ataxia de Friedreich , Doenças Neurodegenerativas , Substância Branca , Adulto , Humanos , Ataxia de Friedreich/diagnóstico por imagem , Ataxia de Friedreich/complicações , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Doenças Neurodegenerativas/complicações , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Gravidade do Paciente
16.
Res Sq ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993557

RESUMO

Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.neurodesk.org/). Neurodesk includes a browser-accessible virtual desktop environment and a command line interface, mediating access to containerized neuroimaging software libraries on various computing platforms, including personal and high-performance computers, cloud computing and Jupyter Notebooks. This community-oriented, open-source platform enables a paradigm shift for neuroimaging data analysis, allowing for accessible, flexible, fully reproducible, and portable data analysis pipelines.

17.
Sci Rep ; 13(1): 4719, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959247

RESUMO

The field of neuroscience has largely overlooked the impact of motherhood on brain function outside the context of responses to infant stimuli. Here, we apply spectral dynamic causal modelling (spDCM) to resting-state fMRI data to investigate differences in brain function between a group of 40 first-time mothers at 1-year postpartum and 39 age- and education-matched women who have never been pregnant. Using spDCM, we investigate the directionality (top-down vs. bottom-up) and valence (inhibition vs excitation) of functional connections between six key left hemisphere brain regions implicated in motherhood: the dorsomedial prefrontal cortex, ventromedial prefrontal cortex, posterior cingulate cortex, parahippocampal gyrus, amygdala, and nucleus accumbens. We show a selective modulation of inhibitory pathways related to differences between (1) mothers and non-mothers, (2) the interactions between group and cognitive performance and (3) group and social cognition, and (4) differences related to maternal caregiving behaviour. Across analyses, we show consistent disinhibition between cognitive and affective regions suggesting more efficient, flexible, and responsive behaviour, subserving cognitive performance, social cognition, and maternal caregiving. Together our results support the interpretation of these key regions as constituting a parental caregiving network. The nucleus accumbens and the parahippocampal gyrus emerging as 'hub' regions of this network, highlighting the global importance of the affective limbic network for maternal caregiving, social cognition, and cognitive performance in the postpartum period.


Assuntos
Mapeamento Encefálico , Encéfalo , Feminino , Humanos , Encéfalo/diagnóstico por imagem , Período Pós-Parto/fisiologia , Tonsila do Cerebelo/fisiologia , Imageamento por Ressonância Magnética/métodos , Pais
18.
Clin Endocrinol (Oxf) ; 98(5): 692-699, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807922

RESUMO

OBJECTIVE: The role of circulating sex hormones on structural brain ageing is yet to be established. This study explored whether concentrations of circulating sex hormones in older women are associated with the baseline and longitudinal changes in structural brain ageing, defined by the brain-predicted age difference (brain-PAD). DESIGN: Prospective cohort study using data from NEURO and Sex Hormones in Older Women; substudies of the ASPirin in Reducing Events in the Elderly clinical trial. PATIENTS: Community-dwelling older women (aged 70+ years). MEASUREMENTS: Oestrone, testosterone, dehydroepiandrosterone (DHEA), and sex-hormone binding globulin (SHBG) were quantified from plasma samples collected at baseline. T1-weighted magnetic resonance imaging was performed at baseline, 1 and 3 years. Brain age was derived from whole brain volume using a validated algorithm. RESULTS: The sample comprised of 207 women not taking medications known to influence sex hormone concentrations. A statistically higher baseline brain-PAD (older brain age relative to chronological age) was seen for women in the highest DHEA tertile compared with the lowest in the unadjusted analysis (p = .04). This was not significant when adjusted for chronological age, and potential confounding health and behavioural factors. Oestrone, testosterone and SHBG were not associated with brain-PAD cross-sectionally, nor were any of the examined sex hormones or SHBG associated with brain-PAD longitudinally. CONCLUSION: No strong evidence of an association between circulating sex hormones and brain-PAD. Given there is prior evidence to suggests sex hormones may be important for brain ageing, further studies of circulating sex hormones and brain health in postmenopausal women are warranted.


Assuntos
Estradiol , Estrona , Idoso , Humanos , Feminino , Estudos Prospectivos , Pós-Menopausa , Hormônios Esteroides Gonadais , Testosterona , Encéfalo/metabolismo , Desidroepiandrosterona , Globulina de Ligação a Hormônio Sexual/metabolismo
19.
Cereb Cortex ; 33(4): 1476-1488, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35441214

RESUMO

A major challenge in current cognitive neuroscience is how functional brain connectivity gives rise to human cognition. Functional magnetic resonance imaging (fMRI) describes brain connectivity based on cerebral oxygenation dynamics (hemodynamic connectivity), whereas [18F]-fluorodeoxyglucose functional positron emission tomography (FDG-fPET) describes brain connectivity based on cerebral glucose uptake (metabolic connectivity), each providing a unique characterization of the human brain. How these 2 modalities differ in their contribution to cognition and behavior is unclear. We used simultaneous resting-state FDG-fPET/fMRI to investigate how hemodynamic connectivity and metabolic connectivity relate to cognitive function by applying partial least squares analyses. Results revealed that although for both modalities the frontoparietal anatomical subdivisions related the strongest to cognition, using hemodynamic measures this network expressed executive functioning, episodic memory, and depression, whereas for metabolic measures this network exclusively expressed executive functioning. These findings demonstrate the unique advantages that simultaneous FDG-PET/fMRI has to provide a comprehensive understanding of the neural mechanisms that underpin cognition and highlights the importance of multimodality imaging in cognitive neuroscience research.


Assuntos
Conectoma , Humanos , Fluordesoxiglucose F18/metabolismo , Encéfalo , Cognição , Imagem Multimodal , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos
20.
Mov Disord ; 38(1): 45-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308733

RESUMO

BACKGROUND: Spinal cord damage is a hallmark of Friedreich's ataxia (FRDA), but its progression and clinical correlates remain unclear. OBJECTIVE: The objective of this study was to perform a characterization of cervical spinal cord structural damage in a large multisite FRDA cohort. METHODS: We performed a cross-sectional analysis of cervical spinal cord (C1-C4) cross-sectional area (CSA) and eccentricity using magnetic resonance imaging data from eight sites within the ENIGMA-Ataxia initiative, including 256 individuals with FRDA and 223 age- and sex-matched control subjects. Correlations and subgroup analyses within the FRDA cohort were undertaken based on disease duration, ataxia severity, and onset age. RESULTS: Individuals with FRDA, relative to control subjects, had significantly reduced CSA at all examined levels, with large effect sizes (d > 2.1) and significant correlations with disease severity (r < -0.4). Similarly, we found significantly increased eccentricity (d > 1.2), but without significant clinical correlations. Subgroup analyses showed that CSA and eccentricity are abnormal at all disease stages. However, although CSA appears to decrease progressively, eccentricity remains stable over time. CONCLUSIONS: Previous research has shown that increased eccentricity reflects dorsal column (DC) damage, while decreased CSA reflects either DC or corticospinal tract (CST) damage, or both. Hence our data support the hypothesis that damage to the DC and damage to CST follow distinct courses in FRDA: developmental abnormalities likely define the DC, while CST alterations may be both developmental and degenerative. These results provide new insights about FRDA pathogenesis and indicate that CSA of the cervical spinal cord should be investigated further as a potential biomarker of disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Transtornos dos Movimentos , Humanos , Ataxia de Friedreich/complicações , Ataxia de Friedreich/patologia , Ataxia , Imageamento por Ressonância Magnética/métodos , Tratos Piramidais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...