Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(11): 3433-3444, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37555654

RESUMO

Climate change exacerbates abiotic stresses like salinization, negatively impacting crop yield, so development of strategies, like using salt-tolerant rootstocks, is crucial. The CALCINEURIN B-LIKE 10 (SlCBL10) gene has been previously identified as a positive regulator of salt tolerance in the tomato shoot. Here, we report a different function of SlCBL10 in tomato shoot and root, as disruption of SlCBL10 only induced salt sensitivity when it was used in the scion but not in the rootstock. The use of SlCBL10 silencing rootstocks (Slcbl10 mutant and RNAi line) improved salt tolerance on the basis of fruit yield. These changes were associated with improved Na+ and K+ homoeostasis, as SlCBL10 silencing reduced the Na+ content and increased the K+ content under salinity, not only in the rootstock but also in the shoot. Improvement of Na+ homoeostasis in Slcbl10 rootstock seems to be mainly due to induction of SlSOS1 expression, while the higher K+ accumulation in roots seems to be mainly determined by expression of LKT1 transporter and SlSKOR channel. These findings demonstrate that SlCBL10 is a negative regulator of salt tolerance in the root, so the use of downregulated SlCBL10 rootstocks may provide a suitable strategy to increase tomato fruit production under salinity.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Calcineurina/genética , Calcineurina/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Estresse Fisiológico , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
Front Plant Sci ; 14: 1092885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818835

RESUMO

An increase of abiotic stress tolerance and nutritive value of foods is currently a priority because of climate change and rising world population. Among abiotic stresses, salt stress is one of the main problems in agriculture. Mounting urbanization and industrialization, and increasing global food demand, are pressing farmers to make use of marginal lands affected by salinity and low-quality saline water. In that situation, one of the most promising approaches is searching for new sources of genetic variation like salt-tolerant alternative crops or underexploited crops. They are generally less efficient than cultivated crops in optimal conditions due to lower yield but represent an alternative in stressful growth conditions. In this review, we summarize the advances achieved in research on underexploited species differing in their genetic nature. First, we highlight advances in research on salt tolerance of traditional varieties of tomato or landraces; varieties selected and developed by smallholder farmers for adaptation to their local environments showing specific attractive fruit quality traits. We remark advances attained in screening a collection of tomato traditional varieties gathered in Spanish Southeast, a very productive region which environment is extremely stressing. Second, we explore the opportunities of exploiting the natural variation of halophytes, in particular quinoa and amaranth. The adaptation of both species in stressful growth conditions is becoming an increasingly important issue, especially for their cultivation in arid and semiarid areas prone to be affected by salinity. Here we present a project developed in Spanish Southeast, where quinoa and amaranth varieties are being adapted for their culture under abiotic stress targeting high quality grain.

3.
Front Plant Sci ; 12: 604481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643343

RESUMO

Yield losses due to cultivation in saline soils is a common problem all over the world as most crop plants are glycophytes and, hence, susceptible to salt stress. The use of halophytic crops could be an interesting alternative to cope with this issue. The Amaranthaceae family comprises by far the highest proportion of salt-tolerant halophytic species. Amaranth and quinoa belong to this family, and their seeds used as pseudo-cereal grains have received much attention in recent years because of their exceptional nutritional value. While advances in the knowledge of salt tolerance mechanisms of quinoa have been remarkable in recent years, much less attention was received by amaranth, despite evidences pointing to amaranth as a promising species to be grown under salinity. In order to advance in the understanding of strategies used by amaranth to confront salt stress, we studied the comparative responses of amaranth and quinoa to salinity (100 mM NaCl) at the physiological, anatomical, and molecular levels. Amaranth was able to exhibit salt tolerance throughout its life cycle, since grain production was not affected by the saline conditions applied. The high salt tolerance of amaranth is associated with a low basal stomatal conductance due to a low number of stomata (stomatal density) and degree of stomata aperture (in adaxial surface) of leaves, which contributes to avoid leaf water loss under salt stress in a more efficient way than in quinoa. With respect to Na+ homeostasis, amaranth showed a pattern of Na+ distribution throughout the plant similar to glycophytes, with the highest accumulation found in the roots, followed by the stem and the lowest one detected in the leaves. Contrarily, quinoa exhibited a Na+ includer character with the highest accumulation detected in the shoots. Expression levels of main genes involved in Na+ homeostasis (SOS1, HKT1s, and NHX1) showed different patterns between amaranth and quinoa, with a marked higher basal expression in amaranth roots. These results highlight the important differences in the physiological and molecular responses of amaranth and quinoa when confronted with salinity.

4.
Front Plant Sci ; 11: 587754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304365

RESUMO

Identification of tomato varieties able to exhibit higher accumulation of primary and secondary metabolites in their fruits is currently a main objective in tomato breeding. One tool to improve fruit quality is to cultivate the plants under salt stress, although improvement of fruit quality is generally accompanied by productivity losses. However, it is very interesting to implement strategies aiming at enhancing fruit quality of tomato by means of growing plants in moderate salt stress that allows for a sustainable fruit yield. The traditional tomato varieties adapted to the Mediterranean environmental constraints may be very attractive plant materials to achieve this goal, given the wide range of fruit quality traits because of their genetic diversity. Here, agronomic responses and fruit quality traits, including primary and secondary metabolites, were analyzed in fruits of two Mediterranean traditional tomato varieties named "Tomate Pimiento" ("TP") and "Muchamiel Aperado" ("MA") because of the pepper and pear shape of their fruits, using as reference the commercial cultivar "Moneymaker" ("MM"). Plants were grown without salt (control) and with moderate salt stress (50 mM NaCl), which did not affect fruit yield in any variety. "TP" is of great interest because of its high soluble solids content (SSC) in control, which is even higher in salt, whereas "MA" is very attractive because of its high Brix yield index (SSC × fruit yield), used as overall fruit quality measure. Similitude between both traditional varieties were found for primary metabolism, as they significantly increased sucrose contents compared with "MM" in red ripe fruits from plants in control and, especially, salt stress conditions. The most remarkable difference was the high constitutive levels of total amino acids in "TP" fruits, including the three major free amino acids found in tomato fruit, GABA, glutamate, and glutamine, which even increased under salinity. Regarding secondary metabolites, the most interesting change induced by salinity was the increase in α-tocopherol found in red ripe fruits of both "TP" and "MA." These results reveal the interest of traditional varieties as sources of genetic variation in breeding because of their improvement of tomato fruit quality without production losses under moderate salt stress.

5.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878190

RESUMO

Tomato cell wall-associated kinase 1 (SlWAK1) has only been studied in biotic stress response and hence its function in abiotic stress remains unknown. In a screening under salinity of an insertional mutant collection of tomato (Solanum lycopersicum L.), a mutant exhibiting lower degree of leaf chlorosis than wild type (WT) together with reduced leaf Na+ accumulation was selected. Genetic analysis of the mutation revealed that a single T-DNA insertion in the SlWAK1 gene was responsible of the mutant phenotype. Slwak1 null mutant reduced its shoot growth compared with WT, despite its improved Na+ homeostasis. SlWAK1 disruption affected osmotic homeostasis, as leaf water content was lower in mutant than in WT under salt stress. In addition, Slwak1 altered the source-sink balance under salinity, by increasing sucrose content in roots. Finally, a significant fruit yield reduction was found in Slwak1 vs. WT under long-term salt stress, mainly due to lower fruit weight. Our results show that disruption of SlWAK1 induces a higher sucrose transport from source leaf to sink root, negatively affecting fruit, the main sink at adult stage.


Assuntos
Regulação da Expressão Gênica de Plantas , Homeostase , Osmose , Proteínas de Plantas/metabolismo , Estresse Salino , Tolerância ao Sal , Solanum lycopersicum/fisiologia , Parede Celular/química , Solanum lycopersicum/efeitos dos fármacos , Fatores de Transcrição/metabolismo
6.
Plant Cell Environ ; 43(7): 1722-1739, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32329086

RESUMO

Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.


Assuntos
RNA Helicases DEAD-box/fisiologia , Proteínas de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Northern Blotting , Cloroplastos/metabolismo , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino
7.
Front Plant Sci ; 11: 599944, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519853

RESUMO

Ca2+ is a second messenger that mediates plant responses to abiotic stress; Ca2+ signals need to be decoded by Ca2+ sensors that translate the signal into physiological, metabolic, and molecular responses. Recent research regarding the Ca2+ sensor CALCINEURIN B-LIKE PROTEIN 10 (CBL10) has resulted in important advances in understanding the function of this signaling component during abiotic stress tolerance. Under saline conditions, CBL10 function was initially understood to be linked to regulation of Na+ homeostasis, protecting plant shoots from salt stress. During this process, CBL10 interacts with the CBL-interacting protein kinase 24 (CIPK24, SOS2), this interaction being localized at both the plasma and vacuolar (tonoplast) membranes. Interestingly, recent studies have exposed that CBL10 is a regulator not only of Na+ homeostasis but also of Ca2+ under salt stress, regulating Ca2+ fluxes in vacuoles, and also at the plasma membrane. This review summarizes new research regarding functions of CBL10 in plant stress tolerance, predominantly salt stress, as this is the most commonly studied abiotic stress associated with the function of this regulator. Special focus has been placed on some aspects that are still unclear. We also pay particular attention on the proven versatility of CBL10 to activate (in a CIPK-dependent manner) or repress (by direct interaction) downstream targets, in different subcellular locations. These in turn appear to be the link through which CBL10 could be a key master regulator of stress signaling in plants and also a crucial participant in fruit development and quality, as disruption of CBL10 results in inadequate Ca2+ partitioning in plants and fruit. New emerging roles associated with other abiotic stresses in addition to salt stress, such as drought, flooding, and K+ deficiency, are also addressed in this review. Finally, we provide an outline of recent advances in identification of potential targets of CBL10, as CBL10/CIPKs complexes and as CBL10 direct interactions. The aim is to showcase new research regarding this master regulator of abiotic stress tolerance that may be essential to the maintenance of crop productivity under abiotic stress. This is particularly pertinent when considering the scenario of a projected increase in extreme environmental conditions due to climate change.

8.
Front Plant Sci ; 9: 1778, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555505

RESUMO

Salt stress generally induces important negative effects on tomato (Solanum lycopersicum) productivity but it may also cause a positive effect improving fruit quality, one of the greatest challenges in nowadays agriculture. Because of the genetic erosion of this horticultural species, the recovery of locally adapted landraces could play a very important role in avoiding, at least partially, production losses and simultaneously improving fruit quality. Two tomato landraces endemic of the Spanish Southeast area, characterized by the harsh climatic conditions of the Mediterranean basin, have been selected: Negro Yeste (NY) characterized by its dark-red colored fruits and Verdal (V), which fruits did not achieve the characteristic red color at ripening. Here the agronomic, physiological, and metabolic responses of these landraces were compared with the reference tomato commercial cv. Moneymaker (MM), in plants grown without salt (control) and with salt stress (100 mM NaCl) for 70 days. The higher salt tolerance of both landraces was mainly reflected in the fruit number, as NY only reduced the fruit number in salt stress by 20% whereas in MM it was reduced till 43%, and in V the fruit number even showed an increase of 33% with salt stress. An important fruit quality parameter is soluble solids content, which increases induced by salinity were significantly higher in both landraces (60 and 78% in NY and V, respectively) compared with MM (34%). Although both landraces showed a similar response in relation to the high chlorophyll accumulation detected in their fruits, the fruit metabolic profiles were very different. Increased carotenoids levels were found in NY fruits, especially lycopene in ripe fruit, and this characteristic was observed in both control and salt stress. Contrarily, the carotenoid biosynthesis pathway was disrupted in V ripe fruits, but other metabolites, such as Ca2+, mannose, formate, and glutamate were accumulated. These results highlight the potential of tomato landraces to improve nutritional fruit quality and maintain fruit yield stability under salt stress.

9.
BMC Plant Biol ; 18(1): 213, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285698

RESUMO

BACKGROUND: The res (restored cell structure by salinity) mutant, recently identified as the first tomato mutant accumulating jasmonate in roots under non-stressful conditions, exhibits a remarkable growth inhibition and morphological alterations in roots and leaves, which are suppressed when the mutant plants are exposed to salinity. In order to understand the molecular basis of the phenotype recovery induced by salt stress in the res mutant, we carried out a comparative transcriptomic analysis in roots and leaves of wild-type and res plants in absence of stress (control) and when the phenotypic recovery of res mutant began to be observed upon salt stress (5 days of 200 mM NaCl). RESULTS: The number of differentially expressed genes was three times greater in roots than in leaves of res vs WT plants grown in control, and included the down-regulation of growth-promoting genes and the up-regulation of genes involved in Ca2+ signalling, transcription factors and others related to stress responses. However, these expression differences were attenuated under salt stress, coinciding with the phenotypic normalisation of the mutant. Contrarily to the attenuated response observed in roots, an enhanced response was found in leaves under salt stress. This included drastic expression changes in several circadian clock genes, such as GIGANTEA1, which was down-regulated in res vs WT plants. Moreover, the higher photosynthetic efficiency of res leaves under salt stress was accompanied by specific salt-upregulation of the genes RUBISCO ACTIVASE1 and ALTERNATIVE OXIDASE1A. Very few genes were found to be differentially expressed in both tissues (root and leaf) and conditions (control and salt), but this group included SlWRKY39 and SlMYB14 transcription factors, as well as genes related to protein homeostasis, especially protease inhibitors such as METALLOCARBOXYPEPTIDASE INHIBITOR, which also seem to play a role in the phenotype recovery and salt tolerance of res mutant. CONCLUSIONS: In summary, in this study we have identified genes which seem to have a prominent role in salt tolerance. Moreover, we think this work could contribute to future breeding of tomato crops with increased stress tolerance.


Assuntos
Proteínas de Plantas/genética , Tolerância ao Sal/genética , Solanum lycopersicum/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/citologia , Solanum lycopersicum/efeitos dos fármacos , Mutação , Fenótipo , Fotossíntese/genética , Células Vegetais/fisiologia , Células Vegetais/ultraestrutura , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Salinidade , Tolerância ao Sal/fisiologia , Transdução de Sinais/genética , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant J ; 96(2): 300-315, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30003619

RESUMO

Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species.


Assuntos
Complexo Mediador/metabolismo , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gametogênese Vegetal/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Complexo Mediador/genética , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia
11.
Sci Rep ; 8(1): 2791, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434236

RESUMO

Breeding for drought-tolerant crops is a pressing issue due to the increasing frequency and duration of droughts caused by climate change. Although important sources of variation for drought tolerance exist in wild relatives, the mechanisms and the key genes controlling tolerance in tomato are little known. The aim of this study is to determine the drought response of the tomato wild relative Solanum pennellii (Sp) compared with the cultivated tomato Solanum lycopersicum (Sl). The paper investigates the physiological and molecular responses in leaves of Sp and Sl plants without stress and moderate drought stress. Significant physiological differences between species were found, with Sp leaves showing greater ability to avoid water loss and oxidative damage. Leaf transcriptomic analysis carried out when leaves did not as yet show visual dehydration symptoms revealed important constitutive expression differences between Sp and Sl species. Genes linked to different physiological and metabolic processes were induced by drought in Sp, especially those involved in N assimilation, GOGAT/GS cycle and GABA-shunt. Up-regulation in Sp of genes linked to JA/ET biosynthesis and signaling pathways was also observed. In sum, genes involved in the amino acid metabolism together with genes linked to ET/JA seem to be key actors in the drought tolerance of the wild tomato species.


Assuntos
Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Solanum/metabolismo , Aminoácidos , Produtos Agrícolas/genética , Desidratação/metabolismo , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Solanum/genética , Estresse Fisiológico , Água/metabolismo
12.
Plant Physiol ; 176(2): 1676-1693, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29229696

RESUMO

Characterization of a new tomato (Solanum lycopersicum) T-DNA mutant allowed for the isolation of the CALCINEURIN B-LIKE PROTEIN 10 (SlCBL10) gene whose lack of function was responsible for the severe alterations observed in the shoot apex and reproductive organs under salinity conditions. Physiological studies proved that SlCBL10 gene is required to maintain a proper low Na+/Ca2+ ratio in growing tissues allowing tomato growth under salt stress. Expression analysis of the main responsible genes for Na+ compartmentalization (i.e. Na+/H+ EXCHANGERs, SALT OVERLY SENSITIVE, HIGH-AFFINITY K+ TRANSPORTER 1;2, H+-pyrophosphatase AVP1 [SlAVP1] and V-ATPase [SlVHA-A1]) supported a reduced capacity to accumulate Na+ in Slcbl10 mutant leaves, which resulted in a lower uploading of Na+ from xylem, allowing the toxic ion to reach apex and flowers. Likewise, the tomato CATION EXCHANGER 1 and TWO-PORE CHANNEL 1 (SlTPC1), key genes for Ca2+ fluxes to the vacuole, showed abnormal expression in Slcbl10 plants indicating an impaired Ca2+ release from vacuole. Additionally, complementation assay revealed that SlCBL10 is a true ortholog of the Arabidopsis (Arabidopsis thaliana) CBL10 gene, supporting that the essential function of CBL10 is conserved in Arabidopsis and tomato. Together, the findings obtained in this study provide new insights into the function of SlCBL10 in salt stress tolerance. Thus, it is proposed that SlCBL10 mediates salt tolerance by regulating Na+ and Ca2+ fluxes in the vacuole, cooperating with the vacuolar cation channel SlTPC1 and the two vacuolar H+-pumps, SlAVP1 and SlVHA-A1, which in turn are revealed as potential targets of SlCBL10.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Solanum lycopersicum/genética , Calcineurina/genética , Homeostase , Solanum lycopersicum/fisiologia , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Estresse Salino , Tolerância ao Sal , Trocadores de Sódio-Hidrogênio/genética , Vacúolos/metabolismo
13.
Plant Signal Behav ; 12(11): e1146847, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26906266

RESUMO

The res (restored cell structure by salinity) mutant, recently identified as the first tomato mutant accumulating jasmonate (JA) without stress, exhibited important morphological alterations when plants were grown under control conditions but these disappeared under salt stress. Since the defense responses against stresses are activated in the res mutant as a consequence of the increased expression of genes from the JA biosynthetic and signaling pathways, the mutant may display a tolerance response not only to salt stress but also to multiple stresses. Here, we show that when res mutant plants are grown under the summer natural conditions of the Mediterranean area, with high temperatures and low relative humidity, the characteristic leaf chlorosis exhibited by the mutant disappears and leaves become dark green over time, with a similar aspect to WT leaves. Moreover, the mutant plants are able to achieve chlorophyll and fluorescence levels similar to those of WT. These results hint that research on res tomato mutant may allow very significant advances in the knowledge of defense responses activated by JA against multiple stresses.


Assuntos
Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Oxilipinas/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética
14.
Plant Biotechnol J ; 14(6): 1345-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26578112

RESUMO

A screening under salt stress conditions of a T-DNA mutant collection of tomato (Solanum lycopersicum L.) led to the identification of the altered response to salt stress 1 (ars1) mutant, which showed a salt-sensitive phenotype. Genetic analysis of the ars1 mutation revealed that a single T-DNA insertion in the ARS1 gene was responsible of the mutant phenotype. ARS1 coded for an R1-MYB type transcription factor and its expression was induced by salinity in leaves. The mutant reduced fruit yield under salt acclimation while in the absence of stress the disruption of ARS1 did not affect this agronomic trait. The stomatal behaviour of ars1 mutant leaves induced higher Na(+) accumulation via the transpiration stream, as the decreases of stomatal conductance and transpiration rate induced by salt stress were markedly lower in the mutant plants. Moreover, the mutation affected stomatal closure in a response mediated by abscisic acid (ABA). The characterization of tomato transgenic lines silencing and overexpressing ARS1 corroborates the role of the gene in regulating the water loss via transpiration under salinity. Together, our results show that ARS1 tomato gene contributes to reduce transpirational water loss under salt stress. Finally, this gene could be interesting for tomato molecular breeding, because its manipulation could lead to improved stress tolerance without yield penalty under optimal culture conditions.


Assuntos
Proteínas de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Cloreto de Sódio/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/fisiologia , Solanum lycopersicum/genética , Mutagênese Insercional , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transpiração Vegetal/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo
15.
Physiol Plant ; 155(3): 296-314, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25582191

RESUMO

Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress.


Assuntos
Ciclopentanos/metabolismo , Mutação , Oxilipinas/metabolismo , Raízes de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/citologia , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Potássio/metabolismo , Salinidade , Tolerância ao Sal/fisiologia , Transdução de Sinais
16.
Physiol Plant ; 152(4): 700-13, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24773242

RESUMO

For salt tolerance to be achieved in the long-term plants must regulate Na(+)/K(+) homeostasis over time. In this study, we show that the salt tolerance induced by overexpression of the yeast HAL5 gene in tomato (Solanum lycopersicum) was related to a lower leaf Na(+) accumulation in the long term, by reducing Na(+) transport from root to shoot over time regardless of the severity of salt stress. Furthermore, maintaining Na(+)/K(+) homeostasis over time was associated with changes in the transcript levels of the Na(+) and K(+) transporters such as SlHKT1;2 and SlHAK5. The expression of SlHKT1;2 was upregulated in response to salinity in roots of transgenic plants but downregulated in the roots of wild-type (WT) plants, which seems to be related to the lower Na(+) transport rate from root to shoot in transgenic plants. The expression of the SlHAK5 increased in roots and leaves of both WT and transgenic plants under salinity. However, this increase was much higher in the leaves of transgenic plants than in those of WT plants, which may be associated with the ability of transgenic leaves to maintain Na(+)/K(+) homeostasis over time. Taken together, the results show that the salt tolerance mechanism induced by HAL5 overexpression in tomato is related to the appropriate regulation of ion transport from root to shoot and maintenance of the leaf Na(+)/K(+) homeostasis through modulation of SlHKT1 and SlHAK5 over time.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Cloreto de Sódio/farmacologia , Solanum lycopersicum/fisiologia , Frutas/genética , Frutas/fisiologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transporte de Íons , Solanum lycopersicum/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Potássio/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Salinidade , Tolerância ao Sal , Sódio/metabolismo , Transgenes , Xilema/genética , Xilema/fisiologia
17.
J Rheumatol ; 41(3): 453-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24488423

RESUMO

OBJECTIVE: To compare the prevalence and disability of headache in patients with systemic lupus erythematosus (SLE) with the general population and to assess the role of chronic psychological stress (CPS) in headache development. METHODS: One hundred seventy patients with SLE and 102 control subjects matched for age, sex, and level of education were included in this multicenter, cross-sectional study. CPS, headache-related disability, and chronic analgesic intake (CAI) were evaluated in all participants. RESULTS: No statistical differences in the prevalence of headache between both groups were observed but headache disability was significantly higher in patients with SLE. In addition, a higher average score in the Cohen Perceived Stress Scale (CPSS) and a higher prevalence of patients with CAI were observed in patients with SLE. In multivariate analysis, CPSS score was positively (OR 1.09; 95% CI: 1.03-1.14; p = 0.001) and CAI negatively (OR 0.43; 95% CI: 0.19-0.99; p = 0.049) associated with headache in patients with SLE. CONCLUSION: Despite the prevalence of headache in patients with SLE and the general population being similar, headache-related disability may be higher in patients with SLE. Moreover, CPS might play a role in the pathogenesis of SLE headache, whereas CAI might have a protective effect against it.


Assuntos
Cefaleia/epidemiologia , Cefaleia/etiologia , Lúpus Eritematoso Sistêmico/complicações , Estresse Psicológico/complicações , Adulto , Estudos Transversais , Feminino , Cefaleia/psicologia , Humanos , Lúpus Eritematoso Sistêmico/psicologia , Masculino , Pessoa de Meia-Idade , Prevalência , Estresse Psicológico/psicologia
18.
Plant Physiol ; 160(2): 708-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22908117

RESUMO

A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.


Assuntos
Cloroplastos/metabolismo , Metabolismo Energético , Plastídeos/metabolismo , Proteoma/análise , Solanum lycopersicum/metabolismo , Tilacoides/metabolismo , Transporte Biológico , Metabolismo dos Carboidratos , Carotenoides/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genomas de Plastídeos , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Redes e Vias Metabólicas , Plastídeos/genética , Proteoma/metabolismo , Proteômica/métodos , Tilacoides/genética
19.
J Proteomics ; 75(17): 5463-78, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22796354

RESUMO

In order to advance in the understanding of CI in pepper fruits, the cell ultrastructure alterations induced by CI and the physiological and metabolic changes have been studied along with the proteomic study. When stored at low temperatures bell pepper (Capsicum annuum) fruits exhibited visual CI symptoms and important alterations within the cell ultrastructure, since peroxisomes and starch grains were not detected and the structure of the chloroplast was seriously damaged in chilled tissues. Physiological and metabolic disorders were also observed in chilled fruits, such as higher ethylene production, increased MDA content, changes in sugar and organic acids and enzymatic activities. The comparative proteomic analysis between control and chilled fruits reveals that the main alterations induced by CI in bell pepper fruits are linked to redox homeostasis and carbohydrate metabolism. Thus, protein abundance in the ascorbate-glutathione cycle is altered and catalase is down-regulated. Key proteins from glycolysis, Calvin cycle and Krebs cycle are also inhibited in chilled fruits. Enolase and GAPDH are revealed as proteins that may play a key role in the development of chilling injury. This study also provides the first evidence at the protein level that cytosolic MDH is involved in abiotic stress.


Assuntos
Capsicum , Temperatura Baixa/efeitos adversos , Proteoma/análise , Capsicum/química , Capsicum/metabolismo , Capsicum/ultraestrutura , Compreensão/fisiologia , Eletroforese em Gel Bidimensional , Frutas/química , Frutas/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Doenças das Plantas/etiologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica , Estresse Fisiológico/fisiologia
20.
Plant Cell Physiol ; 53(2): 470-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22227396

RESUMO

A comparative proteomic analysis between tomato fruits stored at chilling and non-chilling temperatures was carried out just before the appearance of visible symptoms of chilling injury. At this stage of the stress period it was possible to discriminate between proteins involved in symptoms and proteins implicated in response. To investigate the changes in the tomato fruit proteome under this specific stressful condition, two-dimensional differential in-gel electrophoresis coupled with spot identification by mass spectrometry was applied. This proteomic approach allowed the identification of differentially expressed proteins which are involved in two main biological functions: (i) defensive mechanisms represented by small heat shock and late embryogenesis proteins; and (ii) reaction to the uncoupling of photosynthetic processes and the protein degradation machinery. One of the first changes observed in chilled fruits is the down-regulation of ATP synthase, 26S proteasome subunit RPN11 and aspartic proteinase, whereas the first responses in order to deal with the stress are mainly multifunctional proteins involved not only in metabolism but also in stress regulation such as glyceraldehyde phosphate dehydrogenase, 2-oxoglutarate dehydrogenase and invertase. In addition, our data seem to indicate a possible candidate to be used as a protein marker for further studies on cold stress: aldose-1-epimerase, which seems to have an important role in low temperature tolerance.


Assuntos
Temperatura Baixa , Frutas/metabolismo , Fotossíntese , Proteoma/metabolismo , Solanum lycopersicum/metabolismo , Eletroforese em Gel Bidimensional , Armazenamento de Alimentos , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...