Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085053

RESUMO

For most laboratory plasma experiments, Coulomb collisions between the particle species are sufficiently frequent that the particle distribution functions are relaxed to a near-Maxwellian form. This hampers the applicability of such experiments to phenomena observed in tenuous and near-collisionless space plasma. The Terrestrial Reconnection EXperiment (TREX) at the Wisconsin Plasma Physics Laboratory aims to study collisionless reconnection for parameters relevant to the Earth's magnetosphere. To reduce the role of collisional effects, a reconnection Drive Cylinder has been developed, which increases both the effective system size of the TREX configuration and the rate at which reconnection can be driven. These two effects now permit TREX to reach a kinetic reconnection regime where collisional effects are minimized. The Drive Cylinder is comprised of 12 single loop drive-coils connected in parallel to a 10 kV capacitor bank. Insulated sheets of aluminum are applied to smooth the magnetic fields and enhance the drive efficiency. Following is a description of the technical details and performance of the Drive Cylinder.

2.
Space Sci Rev ; 219(8): 76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023292

RESUMO

A concise review is given on the past two decades' results from laboratory experiments on collisionless magnetic reconnection in direct relation with space measurements, especially by the Magnetospheric Multiscale (MMS) mission. Highlights include spatial structures of electromagnetic fields in ion and electron diffusion regions as a function of upstream symmetry and guide field strength, energy conversion and partitioning from magnetic field to ions and electrons including particle acceleration, electrostatic and electromagnetic kinetic plasma waves with various wavelengths, and plasmoid-mediated multiscale reconnection. Combined with the progress in theoretical, numerical, and observational studies, the physics foundation of fast reconnection in collisionless plasmas has been largely established, at least within the parameter ranges and spatial scales that were studied. Immediate and long-term future opportunities based on multiscale experiments and space missions supported by exascale computation are discussed, including dissipation by kinetic plasma waves, particle heating and acceleration, and multiscale physics across fluid and kinetic scales.

3.
Phys Rev Lett ; 127(21): 215101, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860109

RESUMO

We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region in the Earth's magnetotail. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus, all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing. These results shed light on the interplay between magnetic reconnection and current sheet drift instabilities in electron-scale current sheets and highlight the need for adopting a 3D description of the EDR, going beyond the two-dimensional and steady-state conception of reconnection.

4.
Phys Rev Lett ; 126(18): 185002, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018793

RESUMO

We present the first observation of instability in weakly magnetized, pressure dominated plasma Couette flow firmly in the Hall regime. Strong Hall currents couple to a low frequency electromagnetic mode that is driven by high-ß (>1) pressure profiles. Spectroscopic measurements show heating (factor of 3) of the cold, unmagnetized ions via a resonant Landau damping process. A linear theory of this instability is derived that predicts positive growth rates at finite ß and shows the stabilizing effect of very large ß, in line with observations.

5.
Phys Rev Lett ; 126(14): 145001, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891437

RESUMO

Supermagnetosonic perpendicular flows are magnetically driven by a large radius theta-pinch experiment. Fine spatial resolution and macroscopic coverage allow the full structure of the plasma-piston coupling to be resolved in laboratory experiment for the first time. A moving ambipolar potential is observed to reflect unmagnetized ions to twice the piston speed. Magnetized electrons balance the radial potential via Hall currents and generate signature quadrupolar magnetic fields. Electron heating in the reflected ion foot is adiabatic.

6.
Phys Rev Lett ; 125(13): 135001, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034476

RESUMO

A novel plasma equilibrium in the high-ß, Hall regime that produces centrally peaked, high Mach number Couette flow is described. Flow is driven using a weak, uniform magnetic field and large, cross field currents. Large magnetic field amplification (factor 20) due to the Hall effect is observed when electrons are flowing radially inward, and near perfect field expulsion is observed when the flow is reversed. A dynamic equilibrium is reached between the amplified (removed) field and extended density gradients.

7.
Nat Commun ; 11(1): 2942, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522987

RESUMO

Energetic particle generation is an important component of a variety of astrophysical systems, from seed particle generation in shocks to the heating of the solar wind. It has been shown that magnetic pumping is an efficient mechanism for heating thermal particles, using the largest-scale magnetic fluctuations. Here we show that when magnetic pumping is extended to a spatially-varying magnetic flux tube, magnetic trapping of superthermal particles renders pumping an effective energization method for particles moving faster than the speed of the waves and naturally generates power-law distributions. We validated the theory by spacecraft observations of the strong, compressional magnetic fluctuations near the Earth's bow shock from the Magnetospheric Multiscale mission. Given the ubiquity of magnetic fluctuations in different astrophysical systems, this mechanism has the potential to be transformative to our understanding of how the most energetic particles in the universe are generated.

8.
Phys Rev Lett ; 123(22): 225101, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31868399

RESUMO

Aided by fully kinetic simulations, spacecraft observations of magnetic reconnection in Earth's magnetotail are analyzed. The structure of the electron diffusion region is in quantitative agreement with the numerical model. Of special interest, the spacecraft data reveal how reconnection is mediated by off-diagonal stress in the electron pressure tensor breaking the frozen-in law of the electron fluid.

9.
Phys Rev Lett ; 123(5): 055001, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491308

RESUMO

We report on the first comprehensive experimental and numerical study of fast ion transport in the helical reversed-field pinch (RFP). Classical orbit effects dominate the macroscopic confinement properties. The strongest effect arises from growth in the dominant fast ion guiding-center island, but substantial influence from remnant subdominant tearing modes also plays a critical role. At the formation of the helical RFP, neutron flux measurements indicate a drastic loss of fast ions at sufficient subdominant mode amplitudes. Simulations corroborate these measurements and suggest that subdominant tearing modes strongly limit fast ion behavior. Previous work details a sharp thermal transport barrier and suggests the helical RFP as an Ohmically heated fusion reactor candidate; the enhanced transport of fast ions reported here identifies a key challenge for this scheme, but a workable scenario is conceivable with low subdominant tearing mode amplitudes.

10.
Geophys Res Lett ; 45(2): 578-584, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29576666

RESUMO

We report Magnetospheric Multiscale observations of electron pressure gradient electric fields near a magnetic reconnection diffusion region using a new technique for extracting 7.5 ms electron moments from the Fast Plasma Investigation. We find that the deviation of the perpendicular electron bulk velocity from E × B drift in the interval where the out-of-plane current density is increasing can be explained by the diamagnetic drift. In the interval where the out-of-plane current is transitioning to in-plane current, the electron momentum equation is not satisfied at 7.5 ms resolution.

11.
Phys Rev Lett ; 120(5): 055101, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481157

RESUMO

Fully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ∼6d_{e} electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. The numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth's dayside magnetopause.

12.
Nat Commun ; 8: 14391, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186168

RESUMO

Innate immune activation by macrophages is an essential part of host defence against infection. Cytosolic recognition of microbial DNA in macrophages leads to induction of interferons and cytokines through activation of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Other host factors, including interferon-gamma inducible factor 16 (IFI16), have been proposed to contribute to immune activation by DNA. However, their relation to the cGAS-STING pathway is not clear. Here, we show that IFI16 functions in the cGAS-STING pathway on two distinct levels. Depletion of IFI16 in macrophages impairs cGAMP production on DNA stimulation, whereas overexpression of IFI16 amplifies the function of cGAS. Furthermore, IFI16 is vital for the downstream signalling stimulated by cGAMP, facilitating recruitment and activation of TANK-binding kinase 1 in STING complex. Collectively, our results suggest that IFI16 is essential for efficient sensing and signalling upon DNA challenge in macrophages to promote interferons and antiviral responses.


Assuntos
DNA/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosfoproteínas/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Imunidade Inata/genética , Interferons/imunologia , Interferons/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Células THP-1
13.
Rev Sci Instrum ; 87(11): 11D824, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910492

RESUMO

A fast ion loss detector has been constructed and implemented on the Madison Symmetric Torus (MST) to investigate energetic ion losses and transport due to energetic particle and MHD instabilities. The detector discriminates particle orbits solely on pitch and consists of two thin-foil, particle collecting plates that are symmetric with respect to the device aperture. One plate collects fast ion signal, while the second aids in the minimization of background and noise effects. Initial measurements are reported along with suggestions for the next design phase of the detector.

14.
Phys Rev Lett ; 117(18): 185101, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835028

RESUMO

Supported by a kinetic simulation, we derive an exclusion energy parameter E_{X} providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell demon, only high-energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low-density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low-density separatrix.

15.
Phys Rev Lett ; 116(25): 255001, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391729

RESUMO

The spontaneous formation of magnetic islands is observed in driven, antiparallel magnetic reconnection on the Terrestrial Reconnection Experiment. We here provide direct experimental evidence that the plasmoid instability is active at the electron scale inside the ion diffusion region in a low collisional regime. The experiments show the island formation occurs at a smaller system size than predicted by extended magnetohydrodynamics or fully collisionless simulations. This more effective seeding of magnetic islands emphasizes their importance to reconnection in naturally occurring 3D plasmas.

16.
Phys Rev Lett ; 110(13): 135004, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581331

RESUMO

The electron diffusion region during magnetic reconnection lies in different regimes depending on the pressure anisotropy, which is regulated by the properties of thermal electron orbits. In kinetic simulations at the weakest guide fields, pitch angle mixing in velocity space causes the outflow electron pressure to become nearly isotropic. Above a threshold guide field that depends on a range of parameters, including the normalized electron pressure and the ion-to-electron mass ratio, electron pressure anisotropy develops in the exhaust and supports extended current layers. This new regime with electron current sheets extending to the system size is also reproduced by fluid simulations with an anisotropic closure for the electron pressure. It offers an explanation for recent spacecraft observations.

17.
Phys Rev Lett ; 109(11): 115004, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005640

RESUMO

Collisionless magnetic reconnection in high-temperature plasmas has been widely studied through fluid-based models. Here, we present results of fluid simulation implementing new equations of state for guide-field reconnection. The new fluid closure accurately accounts for the anisotropic electron pressure that builds in the reconnection region due to electric and magnetic trapping of electrons. In contrast to previous fluid models, our fluid simulation reproduces the detailed reconnection region as observed in fully kinetic simulations. We hereby demonstrate that the new fluid closure self-consistently captures all the physics relevant to the structure of the reconnection region, providing a gateway to a renewed and deeper theoretical understanding of reconnection in weakly collisional regimes.

18.
Phys Rev Lett ; 106(6): 065002, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21405472

RESUMO

Strong electron pressure anisotropy has been observed upstream of electron diffusion regions during reconnection in Earth's magnetotail and kinetic simulations. For collisionless antiparallel reconnection, we find that the anisotropy drives the electron current in the electron diffusion region, and that this current is insensitive to the reconnection electric field. Reconstruction of the electron distribution function within this region at enhanced resolutions reveals its highly structured nature and the mechanism by which the pressure anisotropy sets the structure of the region.


Assuntos
Elétrons , Magnetismo , Modelos Teóricos , Anisotropia , Difusão , Cinética
19.
Phys Rev Lett ; 102(8): 085001, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19257745

RESUMO

Direct in situ observation of magnetic reconnection in the Earth's magnetotail as well as kinetic numerical studies have recently shown that the electron pressure in a collisionless reconnection region is strongly anisotropic. This anisotropy is mainly caused by the trapping of electrons in parallel electric fields. We present new equations of state for the parallel and perpendicular pressures for magnetized electrons. This model-derived here and tested against a kinetic simulation-allows a fluid description in a collisionless regime where parallel electric fields and the dynamics of both passing and trapped electrons are essential.

20.
Phys Rev Lett ; 101(25): 255003, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113719

RESUMO

We report the observation of large-amplitude, nonlinear electrostatic structures, identified as electron phase-space holes, during magnetic reconnection experiments on the Versatile Toroidal Facility at MIT. The holes are positive electric potential spikes, observed on high-bandwidth ( approximately 2 GHz) Langmuir probes. Investigations with multiple probes establish that the holes travel at or above the electron thermal speed and have a three-dimensional, approximately spherical shape, with a scale size approximately 2 mm. This corresponds to a few electron gyroradii, or many tens of Debye lengths, which is large compared to holes considered in simulations and observed by satellites, whose length scale is typically only a few Debye lengths. Finally, a statistical study over many discharges confirms that the holes appear in conjunction with the large inductive electric fields and the creation of energetic electrons associated with the magnetic energy release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...