Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 225, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383609

RESUMO

Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.


Assuntos
Ecossistema , Pradaria , Plantas , Biodiversidade , Peru , Clima , Altitude , Incêndios
2.
New Phytol ; 238(6): 2621-2633, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36519258

RESUMO

Global vegetation regimes vary in belowground carbon (C) and nitrogen (N) dynamics. However, disentangling large-scale climatic controls from the effects of intrinsic plant-soil-microbial feedbacks on belowground processes is challenging. In local gradients with similar pedo-climatic conditions, effects of plant-microbial feedbacks may be isolated from large-scale drivers. Across a subarctic-alpine mosaic of historic grazing fields and surrounding heath and birch forest, we evaluated whether vegetation-specific plant-microbial feedbacks involved contrasting N cycling characteristics and C and N stocks in the organic topsoil. We sequenced soil fungi, quantified functional genes within the inorganic N cycle, and measured 15 N natural abundance. In grassland soils, large N stocks and low C : N ratios associated with fungal saprotrophs, archaeal ammonia oxidizers, and bacteria capable of respiratory ammonification, indicating maintained inorganic N cycling a century after abandoned reindeer grazing. Toward forest and heath, increasing abundance of mycorrhizal fungi co-occurred with transition to organic N cycling. However, ectomycorrhizal fungal decomposers correlated with small soil N and C stocks in forest, while root-associated ascomycetes associated with small N but large C stocks in heath, uncoupling C and N storage across vegetation types. We propose that contrasting, positive plant-microbial feedbacks stabilize vegetation trajectories, resulting in diverging soil C : N ratios at the landscape scale.


Assuntos
Micorrizas , Solo , Retroalimentação , Plantas/microbiologia , Florestas , Carbono , Microbiologia do Solo , Nitrogênio
3.
PLoS One ; 17(12): e0278339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36542605

RESUMO

The Open Science (OS) movement is rapidly gaining traction among policy-makers, research funders, scientific journals and individual scientists. Despite these tendencies, the pace of implementing OS throughout the scientific process and across the scientific community remains slow. Thus, a better understanding of the conditions that affect OS engagement, and in particular, of how practitioners learn, use, conduct and share research openly can guide those seeking to implement OS more broadly. We surveyed participants at an OS workshop hosted by the Living Norway Ecological Data Network in 2020 to learn how they perceived OS and its importance in their research, supervision and teaching. Further, we wanted to know what OS practices they had encountered in their education and what they saw as hindering or helping their engagement with OS. The survey contained scaled-response and open-ended questions, allowing for a mixed-methods approach. We obtained survey responses from 60 out of 128 workshop participants (47%). Responses indicated that usage and sharing of open data and code, as well as open access publication, were the most frequent OS practices. Only a minority of respondents reported having encountered OS in their formal education. A majority also viewed OS as less important in their teaching than in their research and supervisory roles. The respondents' suggestions for what would facilitate greater OS engagement in the future included knowledge, guidelines, and resources, but also social and structural support. These are aspects that could be strengthened by promoting explicit implementation of OS practices in higher education and by nurturing a more inclusive and equitable OS culture. We argue that incorporating OS in teaching and learning of science can yield substantial benefits to the research community, student learning, and ultimately, to the wider societal objectives of science and higher education.


Assuntos
Aprendizagem , Humanos , Inquéritos e Questionários , Noruega
4.
Sci Data ; 9(1): 451, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902592

RESUMO

Plant removal experiments allow assessment of the role of biotic interactions among species or functional groups in community assembly and ecosystem functioning. When replicated along climate gradients, they can assess changes in interactions among species or functional groups with climate. Across twelve sites in the Vestland Climate Grid (VCG) spanning 4 °C in growing season temperature and 2000 mm in mean annual precipitation across boreal and alpine regions of Western Norway, we conducted a fully factorial plant functional group removal experiment (graminoids, forbs, bryophytes). Over six years, we recorded biomass removed, soil microclimate, plant community composition and structure, seedling recruitment, ecosystem carbon fluxes, and reflectance in 384 experimental and control plots. The dataset consists of 5,412 biomass records, 360 species-level biomass records, 1,084,970 soil temperature records, 4,771 soil moisture records, 17,181 plant records covering 206 taxa, 16,656 seedling records, 3,696 ecosystem carbon flux measurements, and 1,244 reflectance measurements. The data can be combined with longer-term climate data and plant population, community, ecosystem, and functional trait data collected within the VCG.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Biomassa , Carbono , Mudança Climática , Plantas , Solo/química
5.
Ecology ; 100(7): e02731, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30991449

RESUMO

Ecosystems where severe disturbance has induced permanent shifts in vegetation and soil processes may represent alternative stable states. To date, little is known on how long-lasting changes in soil processes are following such disturbances, and how the changes in plant and soil processes between the alternative states eventually manifest themselves in soil organic matter (SOM) storage. Here, we analyzed plant density, the shrub : forb ratio, microbial respiration, extracellular enzyme activities and SOM stocks in soils of subarctic tundra and historical milking grounds, where reindeer herding induced a vegetation transition from deciduous shrubs to graminoids several centuries earlier but were abandoned a century ago. This provides the possibility to compare sites with similar topography, but highly contrasting vegetation for centuries. We found that enzymatic activities and N:P stoichiometry differed between control and disturbed sites, confirming that culturally induced vegetation shifts exert lasting impacts on tundra soil processes. Transition zones, where shrubs had encroached into the historical milking grounds during the past 50 yr, indicated that microbial activities for N and P acquisition changed more rapidly along a vegetation shift than those for microbial C acquisition. Although plant and soil processes differed between control and disturbed sites, we found no effect of historical vegetation transition on SOM stock. Across the study sites, soil SOM stocks were correlated with total plant density but not with the shrub : forb ratio. Our finding that SOM stock was insensitive to a centennial difference in plant community composition suggests that, as such, grazing-induced alternative vegetation states might not necessarily differ in SOM sequestration.


Assuntos
Ecossistema , Solo , Carbono , Plantas , Tundra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...