Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Schmerz ; 2024 May 07.
Artigo em Alemão | MEDLINE | ID: mdl-38713210

RESUMO

BACKGROUND: In almost half of patients suffering from small fiber neuropathies (SFN), the etiology remains elusive. For these patients with "idiopathic SFN", symptomatic analgesic therapy is the only option. Reports on a potential genetic background of neuropathic pain syndromes are increasing and particularly in SFN patients, several genetic variants were found mainly located in genes encoding voltage-gated sodium channels. Although up to 30% of SFN patients show genetic alterations, most of these remain of "unknown pathogenic significance" and little is known about "genetic SFN". OBJECTIVES: The study aimed to determine clinical characteristics of SFN patients carrying a rare genetic variant of unknown significance in pain-associated genes. MATERIALS AND METHODS: From 2015 to 2020, 66 patients with primarily idiopathic SFN were examined and rare gene variants of unknown significance detected in 13/66 (20%) of these. A detailed medical history with focus on pain was recorded and patients filled in standardized questionnaires to assess physical and emotional burden due to pain. RESULTS: The authors found 13/66 (20%) patients with rare variants of unknown significance located in pain-associated genes who reported pain refractory to analgesic treatment, a higher number of external factors influencing clinical symptoms, and a higher level of physical impairment and emotional stress due to pain compared with patients without such genetic variants. CONCLUSIONS: Early genetic assessment is recommended to optimize the management of patients with potentially hereditary SFN. Early access to rehabilitation and mental support as well as a consequent elimination of external triggering factors should be granted.

2.
Pain Rep ; 9(1): e1136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283649

RESUMO

Introduction: Fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) are distinct pain conditions that share commonalities and may be challenging as for differential diagnosis. Objective: To comprehensively investigate clinical characteristics of women with FMS and SFN to determine clinically applicable parameters for differentiation. Methods: We retrospectively analyzed medical records of 158 women with FMS and 53 with SFN focusing on pain-specific medical and family history, accompanying symptoms, additional diseases, and treatment. We investigated data obtained using standardized pain, depression, and anxiety questionnaires. We further analyzed test results and findings obtained in standardized small fiber tests. Results: FMS patients were on average ten years younger at symptom onset, described higher pain intensities requiring frequent change of pharmaceutics, and reported generalized pain compared to SFN. Pain in FMS was accompanied by irritable bowel or sleep disturbances, and in SFN by paresthesias, numbness, and impaired glucose metabolism (P < 0.01 each). Family history was informative for chronic pain and affective disorders in FMS (P < 0.001) and for neurological disorders in SFN patients (P < 0.001). Small fiber pathology in terms of skin denervation and/or thermal sensory threshold elevation was present in 110/158 (69.7 %) FMS patients and 39/53 (73.6 %) SFN patients. FMS patients mainly showed proximally reduced skin innervation and higher corneal nerve branch densities (p<0.001) whereas SFN patients were characterized by reduced cold detection and prolonged electrical A-delta conduction latencies (P < 0.05). Conclusions: Our data show that FMS and SFN differ substantially. Detailed pain, drug and family history, investigating blood glucose metabolism, and applying differential small fiber tests may help to improve diagnostic differentiation and targeted therapy.

3.
BMC Neurosci ; 24(1): 1, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604634

RESUMO

BACKGROUND: The role of cytokines in the pathophysiology, diagnosis, and prognosis of small fiber neuropathy (SFN) is incompletely understood. We studied expression profiles of selected pro- and anti-inflammatory cytokines in RNA from white blood cells (WBC) of patients with a medical history and a clinical phenotype suggestive for SFN and compared data with healthy controls. METHODS: We prospectively recruited 52 patients and 21 age- and sex-matched healthy controls. Study participants were characterized in detail and underwent complete neurological examination. Venous blood was drawn for routine and extended laboratory tests, and for WBC isolation. Systemic RNA expression profiles of the pro-inflammatory cytokines interleukin (IL)-1ß, IL-2, IL-8, tumor necrosis factor-alpha (TNF) and the anti-inflammatory cytokines IL-4, IL-10, transforming growth factor beta-1 (TGF) were analyzed. Protein levels of IL-2, IL-8, and TNF were measured in serum of patients and controls. Receiver operating characteristic (ROC)-curve analysis was used to determine the accuracy of IL-2, IL-8, and TNF in differentiating patients and controls. To compare the potential discriminatory efficacy of single versus combined cytokines, equality of different AUCs was tested. RESULTS: WBC gene expression of IL-2, IL-8, and TNF was higher in patients compared to healthy controls (IL-2: p = 0.02; IL-8: p = 0.009; TNF: p = 0.03) and discriminated between the groups (area under the curve (AUC) ≥ 0.68 for each cytokine) with highest diagnostic accuracy reached by combining the three cytokines (AUC = 0.81, sensitivity = 70%, specificity = 86%). Subgroup analysis revealed the following differences: IL-8 and TNF gene expression levels were higher in female patients compared to female controls (IL-8: p = 0.01; TNF: p = 0.03). The combination of TNF with IL-2 and TNF with IL-2 and IL-8 discriminated best between the study groups. IL-2 was higher expressed in patients with moderate pain compared to those with severe pain (p = 0.02). Patients with acral pain showed higher IL-10 gene expression compared to patients with generalized pain (p = 0.004). We further found a negative correlation between the relative gene expression of IL-2 and current pain intensity (p = 0.02). Serum protein levels of IL-2, IL-8, and TNF did not differ between patients and controls. CONCLUSIONS: We identified higher systemic gene expression of IL-2, IL-8, and TNF in SFN patients than in controls, which may be of potential relevance for diagnostics and patient stratification.


Assuntos
Citocinas , Neuropatia de Pequenas Fibras , Feminino , Humanos , Interleucina-10 , Interleucina-2 , Interleucina-8 , Leucócitos/química , Dor , RNA , Fator de Necrose Tumoral alfa
4.
Muscle Nerve ; 65(4): 471-479, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35020203

RESUMO

INTRODUCTION/AIMS: Schwann cell clusters have been described at the murine dermis-epidermis border. We quantified dermal Schwann cells in the skin of patients with small-fiber neuropathy (SFN) compared with healthy controls to correlate with the clinical phenotype. METHODS: Skin punch biopsies from the lower legs of 28 patients with SFN (11 men, 17 women; median age, 54 [range, 19-73] years) and 9 healthy controls (five men, four women, median age, 34 [range, 25-69] years) were immunoreacted for S100 calcium-binding protein B as a Schwann cell marker, protein-gene product 9.5 as a pan-neuronal marker, and CD207 as a Langerhans cell marker. Intraepidermal nerve fiber density (IENFD) and subepidermal Schwann cell counts were determined. RESULTS: Skin samples of patients with SFN showed lower IENFD (P < .05), fewer Schwann cells per millimeter (P < .01), and fewer Schwann cell clusters per millimeter (P < .05) than controls. When comparing SFN patients with reduced (n = 13; median age, 53 [range, 19-73] years) and normal distal (n = 15, median age, 54 [range, 43-68] years) IENFD, the number of solitary Schwann cells per millimeter (p < .01) and subepidermal nerve fibers associated with Schwann cell branches (P < .05) were lower in patients with reduced IENFD. All three parameters correlated positively with distal IENFD (P < .05 to P < .01), whereas no correlation was found between Schwann cell counts and clinical pain characteristics. DISCUSSION: Our data raise questions about the mechanisms underlying the interdependence of dermal Schwann cells and skin innervation in SFN. The temporal course and functional impact of Schwann cell presence and kinetics need further investigation.


Assuntos
Pele , Neuropatia de Pequenas Fibras , Animais , Biópsia , Epiderme/inervação , Feminino , Humanos , Camundongos , Fibras Nervosas/patologia , Células de Schwann , Pele/inervação , Neuropatia de Pequenas Fibras/patologia
5.
Exp Neurol ; 347: 113915, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758342

RESUMO

Neuropathic pain occurs in more than half of the patients suffering from peripheral neuropathies. We investigated the role of microRNA (miR)-21 in neuropathic pain using a murine-human translational approach. We applied the spared nerve injury (SNI) model at the sciatic nerve of mice and assessed the potential analgesic effect of perineurial miR-21-5p inhibitor application. Immune-related targets of miR-21-5p were determined by a qRT-PCR based cytokine and chemokine array. Bioinformatical analysis identified potential miR-21-5p targets interacting with CC-chemokine ligand (CCL)5. We validated CCL5 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHAE), an interaction partner of miR-21-5p and CCL5, by qRT-PCR in murine common peroneal and tibial nerves. Validated candidates were then investigated in white blood cell and sural nerve biopsy samples of patients with focal to generalized pain syndromes, i.e. small fiber neuropathy (SFN), polyneuropathy (PNP), and nerve lesion (NL). We showed that perineurial miR-21-5p inhibition reverses SNI-induced mechanical and heat hypersensitivity in mice and found a reduction of the SNI-induced increase of the pro-inflammatory mediators CCL5 (p < 0.01), CCL17 (p < 0.05), and IL-12ß (p < 0.05) in miR-21-5p inhibitor-treated mice. In silico analysis revealed several predicted and validated targets for miR-21-5p with CCL5 interaction. Among these, we found lower YWHAE gene expression in mice after SNI and perineurial injections of a scrambled oligonucleotide compared to naïve mice (p < 0.05), but this was not changed by miR-21-5p inhibition. Furthermore, miR-21-5p inhibition led to a further increase of the SNI-induced increase in TGFß (p < 0.01). Patient biomaterial revealed different systemic expression patterns of miR-21-5p, with higher expression in SFN and lower expression in NL. Further, we showed higher systemic expression of pro-inflammatory mediators in white blood cells of SFN patients compared to healthy controls. We have conducted a translational study comparing results from animal models to human patients with three different neuropathic pain syndromes. We identified CCL5 as a miR-21 dependent common player in the mouse SNI model and the human painful disease SFN.


Assuntos
Proteínas 14-3-3/biossíntese , Quimiocina CCL5/biossíntese , MicroRNAs/biossíntese , Neuralgia/metabolismo , Medição da Dor/métodos , Pesquisa Translacional Biomédica/métodos , Proteínas 14-3-3/genética , Proteínas 14-3-3/imunologia , Animais , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/imunologia , Neuralgia/genética , Neuralgia/imunologia
6.
Ther Adv Neurol Disord ; 14: 17562864211004318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335876

RESUMO

BACKGROUND AND AIMS: Small fiber neuropathy (SFN) is increasingly suspected in patients with pain of uncertain origin, and making the diagnosis remains a challenge lacking a diagnostic gold standard. METHODS: In this case-control study, we prospectively recruited 86 patients with a medical history and clinical phenotype suggestive of SFN. Patients underwent neurological examination, quantitative sensory testing (QST), and distal and proximal skin punch biopsy, and were tested for pain-associated gene loci. Fifty-five of these patients additionally underwent pain-related evoked potentials (PREP), corneal confocal microscopy (CCM), and a quantitative sudomotor axon reflex test (QSART). RESULTS: Abnormal distal intraepidermal nerve fiber density (IENFD) (60/86, 70%) and neurological examination (53/86, 62%) most frequently reflected small fiber disease. Adding CCM and/or PREP further increased the number of patients with small fiber impairment to 47/55 (85%). Genetic testing revealed potentially pathogenic gene variants in 14/86 (16%) index patients. QST, QSART, and proximal IENFD were of lower impact. CONCLUSION: We propose to diagnose SFN primarily based on the results of neurological examination and distal IENFD, with more detailed phenotyping in specialized centers.

7.
Pain ; 162(10): 2569-2577, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33675632

RESUMO

ABSTRACT: Damage to thinly myelinated and unmyelinated nerve fibers causes small fiber pathology, which is increasingly found in pain syndromes such as small fiber neuropathy (SFN) and fibromyalgia syndrome (FMS). The peripheral nerve endings of the small nerve fibers terminate within the epidermis, where they are surrounded by keratinocytes that may act as primary nociceptive transducers. We performed RNA sequencing of keratinocytes obtained from patients with SFN, FMS, and healthy controls. We found 141 deregulated protein coding genes between SFN patients and healthy controls and no differentially expressed genes between patients with FMS and healthy controls. When comparing patients with SFN with patients with FMS, we detected 167 differentially expressed protein coding genes (129 upregulated and 38 downregulated). Further analysis revealed enriched inflammatory pathways. Validation of selected candidates in an independent cohort confirmed higher expression of the proinflammatory mediators interleukin-8, C-X-C motif chemokine 3, endothelin receptor type A, and the voltage-gated sodium channel 1.7 in SFN compared with patients with FMS. We provide a diverse keratinocyte transcriptome signature between patients with SFN and patients with FMS, which may hint toward distinct pathomechanisms of small fiber sensitization in both entities and lay the basis for advanced diagnostics.


Assuntos
Fibromialgia , Neuropatia de Pequenas Fibras , Humanos , Queratinócitos , Fibras Nervosas Amielínicas , Neuropatia de Pequenas Fibras/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...