Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37015133

RESUMO

A brain-computer interface (BCI) is a system that allows a human operator to use only mental commands in controlling end effectors that interact with the world around them. Such a system consists of a measurement device to record the human user's brain activity, which is then processed into commands that drive a system end effector. BCIs involve either invasive measurements which allow for high-complexity control but are generally infeasible, or noninvasive measurements which offer lower quality signals but are more practical to use. In general, BCI systems have not been developed that efficiently, robustly, and scalably perform high-complexity control while retaining the practicality of noninvasive measurements. Here we leverage recent results from feedback information theory to fill this gap by modeling BCIs as a communications system and deploying a human-implementable interaction algorithm for noninvasive control of a high-complexity robot swarm. We construct a scalable dictionary of robotic behaviors that can be searched simply and efficiently by a BCI user, as we demonstrate through a large-scale user study testing the feasibility of our interaction algorithm, a user test of the full BCI system on (virtual and real) robot swarms, and simulations that verify our results against theoretical models. Our results provide a proof of concept for how a large class of high-complexity effectors (even beyond robotics) can be effectively controlled by a BCI system with low-complexity and noisy inputs.


Assuntos
Interfaces Cérebro-Computador , Robótica , Humanos , Robótica/métodos , Algoritmos , Retroalimentação , Eletroencefalografia/métodos , Interface Usuário-Computador
2.
Front Robot AI ; 7: 580415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501341

RESUMO

In this paper, we present a robotic painting system whereby a team of mobile robots equipped with different color paints create pictorial compositions by leaving trails of color as they move throughout a canvas. We envision this system to be used by an external user who can control the concentration of different colors over the painting by specifying density maps associated with the desired colors over the painting domain, which may vary over time. The robots distribute themselves according to such color densities by means of a heterogeneous distributed coverage control paradigm, whereby only those robots equipped with the appropriate paint will track the corresponding color density function. The painting composition therefore arises as the integration of the motion trajectories of the robots, which lay paint as they move throughout the canvas tracking the color density functions. The proposed interactive painting system is evaluated on a team of mobile robots. Different experimental setups in terms of paint capabilities given to the robots highlight the effects and benefits of considering heterogeneous teams when the painting resources are limited.

3.
Nature ; 473(7346): 158-9, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21562550
4.
Philos Trans A Math Phys Eng Sci ; 368(1928): 4649-72, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20819826

RESUMO

The development of autonomous vehicles for urban driving has seen rapid progress in the past 30 years. This paper provides a summary of the current state of the art in autonomous driving in urban environments, based primarily on the experiences of the authors in the 2007 DARPA Urban Challenge (DUC). The paper briefly summarizes the approaches that different teams used in the DUC, with the goal of describing some of the challenges that the teams faced in driving in urban environments. The paper also highlights the long-term research challenges that must be overcome in order to enable autonomous driving and points to opportunities for new technologies to be applied in improving vehicle safety, exploiting intelligent road infrastructure and enabling robotic vehicles operating in human environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...