Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507413

RESUMO

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias Hepáticas/patologia , RNA/metabolismo , Sumoilação
2.
Nat Commun ; 14(1): 7770, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012160

RESUMO

The transgenic 116C-NOD mouse strain exhibits a prevalent Th17 phenotype, and reduced type 1 diabetes (T1D) compared to non-obese diabetic (NOD) mice. A cohousing experiment between both models revealed lower T1D incidence in NOD mice cohoused with 116C-NOD, associated with gut microbiota changes, reduced intestinal permeability, shifts in T and B cell subsets, and a transition from Th1 to Th17 responses. Distinct gut bacterial signatures were linked to T1D in each group. Using a RAG-2-/- genetic background, we found that T cell alterations promoted segmented filamentous bacteria proliferation in young NOD and 116C-NOD, as well as in immunodeficient NOD.RAG-2-/- and 116C-NOD.RAG-2-/- mice across all ages. Bifidobacterium colonization depended on lymphocytes and thrived in a non-diabetogenic environment. Additionally, 116C-NOD B cells in 116C-NOD.RAG-2-/- mice enriched the gut microbiota in Adlercreutzia and reduced intestinal permeability. Collectively, these results indicate reciprocal modulation between gut microbiota and the immune system in rodent T1D models.


Assuntos
Subpopulações de Linfócitos B , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Camundongos Endogâmicos NOD , Microbioma Gastrointestinal/genética , Linfócitos B
3.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37707961

RESUMO

Factor-inhibiting HIF (FIH) is an asparagine hydroxylase that acts on hypoxia-inducible factors (HIFs) to control cellular adaptation to hypoxia. FIH is expressed in several tumor types, but its impact in tumor progression remains largely unexplored. We observed that FIH was expressed on human lung cancer tissue. Deletion of FIH in mouse and human lung cancer cells resulted in an increased glycolytic metabolism, consistent with increased HIF activity. FIH-deficient lung cancer cells exhibited decreased proliferation. Analysis of RNA-Seq data confirmed changes in the cell cycle and survival and revealed molecular pathways that were dysregulated in the absence of FIH, including the upregulation of angiomotin (Amot), a key component of the Hippo tumor suppressor pathway. We show that FIH-deficient tumors were characterized by higher immune infiltration of NK and T cells compared with FIH competent tumor cells. In vivo studies demonstrate that FIH deletion resulted in reduced tumor growth and metastatic capacity. Moreover, high FIH expression correlated with poor overall survival in non-small cell lung cancer (NSCLC). Our data unravel FIH as a therapeutic target for the treatment of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Hipóxia
4.
Front Endocrinol (Lausanne) ; 14: 1176566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334284

RESUMO

Introduction: During the development of Autoimmune Diabetes (AD) an autoimmune attack against the Peripheral Nervous System occurs. To gain insight into this topic, analyses of Dorsal Root Ganglia (DRG) from Non-Obese Diabetic (NOD) mice were carried out. Methods: Histopathological analysis by electron and optical microscopy in DRG samples, and mRNA expression analyzes by the microarray technique in DRG and blood leukocyte samples from NOD and C57BL/6 mice were performed. Results: The results showed the formation of cytoplasmic vacuoles in DRG cells early in life that could be related to a neurodegenerative process. In view of these results, mRNA expression analyses were conducted to determine the cause and/or the molecules involved in this suspected disorder. The results showed that DRG cells from NOD mice have alterations in the transcription of a wide range of genes, which explain the previously observed alterations. In addition, differences in the transcription genes in white blood cells were also detected. Discussion: Taken together, these results indicate that functional defects are not only seen in beta cells but also in DRG in NOD mice. These results also indicate that these defects are not a consequence of the autoimmune process that takes place in NOD mice and suggest that they may be involved as triggers for its development.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Animais , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Camundongos Endogâmicos C57BL , Expressão Gênica , RNA Mensageiro/metabolismo
5.
Nat Commun ; 14(1): 3496, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311743

RESUMO

Sialic acid-binding Ig-like lectin 15 (Siglec-15) is an immune modulator and emerging cancer immunotherapy target. However, limited understanding of its structure and mechanism of action restrains the development of drug candidates that unleash its full therapeutic potential. In this study, we elucidate the crystal structure of Siglec-15 and its binding epitope via co-crystallization with an anti-Siglec-15 blocking antibody. Using saturation transfer-difference nuclear magnetic resonance (STD-NMR) spectroscopy and molecular dynamics simulations, we reveal Siglec-15 binding mode to α(2,3)- and α(2,6)-linked sialic acids and the cancer-associated sialyl-Tn (STn) glycoform. We demonstrate that binding of Siglec-15 to T cells, which lack STn expression, depends on the presence of α(2,3)- and α(2,6)-linked sialoglycans. Furthermore, we identify the leukocyte integrin CD11b as a Siglec-15 binding partner on human T cells. Collectively, our findings provide an integrated understanding of the structural features of Siglec-15 and emphasize glycosylation as a crucial factor in controlling T cell responses.


Assuntos
Integrinas , Linfócitos T , Humanos , Cristalização , Epitopos , Glicosilação
6.
Hepatology ; 78(3): 878-895, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745935

RESUMO

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.


Assuntos
Hepatopatias Alcoólicas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Etanol/efeitos adversos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriais/metabolismo
7.
Metabolites ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36557244

RESUMO

After SARS-CoV-2 infection, the molecular phenoreversion of the immunological response and its associated metabolic dysregulation are required for a full recovery of the patient. This process is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic evolution and the vaccination status of the population. We have here investigated the natural history of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phenoreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized recovered patients that self-reported having passed the disease (n = 513). Non-hospitalized recovered patients do not show any metabolic fingerprint associated with the disease or immune alterations. Acute patients are characterized by the metabolic and lipidomic dysregulation that accompanies the exacerbated immunological response, resulting in a slow recovery time with a maximum probability of around 62 days. As a manifestation of the heterogeneity in the metabolic phenoreversion, age and severity become factors that modulate their normalization time which, in turn, correlates with changes in the atherogenesis-associated chemokine MCP-1. Our results are consistent with a model where the slow metabolic normalization in acute patients results in enhanced atherosclerotic risk, in line with the recent observation of an elevated number of cardiovascular episodes found in post-COVID-19 cohorts.

8.
Front Immunol ; 13: 1014309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505411

RESUMO

Vaccines against SARS-CoV-2 have alleviated infection rates, hospitalization and deaths associated with COVID-19. In order to monitor humoral immunity, several serology tests have been developed, but the recent emergence of variants of concern has revealed the need for assays that predict the neutralizing capacity of antibodies in a fast and adaptable manner. Sensitive and fast neutralization assays would allow a timely evaluation of immunity against emerging variants and support drug and vaccine discovery efforts. Here we describe a simple, fast, and cell-free multiplexed flow cytometry assay to interrogate the ability of antibodies to prevent the interaction of Angiotensin-converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of the original Wuhan-1 SARS-CoV-2 strain and emerging variants simultaneously, as a surrogate neutralization assay. Using this method, we demonstrate that serum antibodies collected from representative individuals at different time-points during the pandemic present variable neutralizing activity against emerging variants, such as Omicron BA.1 and South African B.1.351. Importantly, antibodies present in samples collected during 2021, before the third dose of the vaccine was administered, do not confer complete neutralization against Omicron BA.1, as opposed to samples collected in 2022 which show significant neutralizing activity. The proposed approach has a comparable performance to other established surrogate methods such as cell-based assays using pseudotyped lentiviral particles expressing the spike of SARS-CoV-2, as demonstrated by the assessment of the blocking activity of therapeutic antibodies (i.e. Imdevimab) and serum samples. This method offers a scalable, cost effective and adaptable platform for the dynamic evaluation of antibody protection in affected populations against variants of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Bloqueadores , Citometria de Fluxo , Vacinas contra COVID-19
10.
Commun Biol ; 5(1): 827, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978143

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a multi-organ damage that includes hepatic dysfunction, which has been observed in over 50% of COVID-19 patients. Liver injury in COVID-19 could be attributed to the cytopathic effects, exacerbated immune responses or treatment-associated drug toxicity. Herein we demonstrate that hepatocytes are susceptible to infection in different models: primary hepatocytes derived from humanized angiotensin-converting enzyme-2 mice (hACE2) and primary human hepatocytes. Pseudotyped viral particles expressing the full-length spike of SARS-CoV-2 and recombinant receptor binding domain (RBD) bind to ACE2 expressed by hepatocytes, promoting metabolic reprogramming towards glycolysis but also impaired mitochondrial activity. Human and hACE2 primary hepatocytes, where steatosis and inflammation were induced by methionine and choline deprivation, are more vulnerable to infection. Inhibition of the renin-angiotensin system increases the susceptibility of primary hepatocytes to infection with pseudotyped viral particles. Metformin, a common therapeutic option for hyperglycemia in type 2 diabetes patients known to partially attenuate fatty liver, reduces the infection of human and hACE2 hepatocytes. In summary, we provide evidence that hepatocytes are amenable to infection with SARS-CoV-2 pseudovirus, and we propose that metformin could be a therapeutic option to attenuate infection by SARS-CoV-2 in patients with fatty liver.


Assuntos
Tratamento Farmacológico da COVID-19 , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Metformina , Animais , Hepatócitos/metabolismo , Humanos , Metformina/farmacologia , Camundongos , Peptidil Dipeptidase A , SARS-CoV-2
11.
Cell Death Discov ; 8(1): 316, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831294

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has reached 5.5 million deaths worldwide, generating a huge impact globally. This highly contagious viral infection produces a severe acute respiratory syndrome that includes cough, mucus, fever and pneumonia. Likewise, many hospitalized patients develop severe pneumonia associated with acute respiratory distress syndrome (ARDS), along an exacerbated and uncontrolled systemic inflammation that in some cases induces a fatal cytokine storm. Although vaccines clearly have had a beneficial effect, there is still a high percentage of unprotected patients that develop the pathology, due to an ineffective immune response. Therefore, a thorough understanding of the modulatory mechanisms that regulate the response to SARS-CoV-2 is crucial to find effective therapeutic alternatives. Previous studies describe the relevance of Neddylation in the activation of the immune system and its implications in viral infection. In this context, the present study postulates Neddylation, a reversible ubiquitin-like post-translational modification of proteins that control their stability, localization and activity, as a key regulator in the immune response against SARS-CoV-2. For the first time, we describe an increase in global neddylation levels in COVID-19 in the serum of patients, which is particularly associated with the early response to infection. In addition, the results showed that overactivation of neddylation controls activation, proliferation, and response of peripheral blood mononuclear cells (PBMCs) isolated from COVID-19 patients. Inhibition of neddylation, and the subsequent avoidance of activated PBMCs, reduces cytokine production, mainly IL-6 and MCP-1 and induce proteome modulation, being a critical mechanism and a potential approach to immunomodulate COVID-19 patients.

12.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192545

RESUMO

The tumor microenvironment (TME) is reprogrammed by cancer cells and participates in all stages of tumor progression. The contribution of stromal cells to the reprogramming of the TME is not well understood. Here, we provide evidence of the role of the cytokine oncostatin M (OSM) as central node for multicellular interactions between immune and nonimmune stromal cells and the epithelial cancer cell compartment. OSM receptor (OSMR) deletion in a multistage breast cancer model halted tumor progression. We ascribed causality to the stromal function of the OSM axis by demonstrating reduced tumor burden of syngeneic tumors implanted in mice lacking OSMR. Single-cell and bioinformatic analysis of murine and human breast tumors revealed that OSM expression was restricted to myeloid cells, whereas OSMR was detected predominantly in fibroblasts and, to a lower extent, cancer cells. Myeloid-derived OSM reprogrammed fibroblasts to a more contractile and tumorigenic phenotype and elicited the secretion of VEGF and proinflammatory chemokines CXCL1 and CXCL16, leading to increased myeloid cell recruitment. Collectively, our data support the notion that the stromal OSM/OSMR axis reprograms the immune and nonimmune microenvironment and plays a key role in breast cancer progression.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Camundongos , Oncostatina M/genética , Oncostatina M/metabolismo , Transdução de Sinais
13.
Emerg Microbes Infect ; 10(1): 1065-1076, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34013835

RESUMO

A main clinical parameter of COVID-19 pathophysiology is hypoxia. Here we show that hypoxia decreases the attachment of the receptor-binding domain (RBD) and the S1 subunit (S1) of the spike protein of SARS-CoV-2 to epithelial cells. In Vero E6 cells, hypoxia reduces the protein levels of ACE2 and neuropilin-1 (NRP1), which might in part explain the observed reduction of the infection rate. In addition, hypoxia inhibits the binding of the spike to NCI-H460 human lung epithelial cells by decreasing the cell surface levels of heparan sulfate (HS), a known attachment receptor of SARS-CoV-2. This interaction is also reduced by lactoferrin, a glycoprotein that blocks HS moieties on the cell surface. The expression of syndecan-1, an HS-containing proteoglycan expressed in lung, is inhibited by hypoxia on a HIF-1α-dependent manner. Hypoxia or deletion of syndecan-1 results in reduced binding of the RBD to host cells. Our study indicates that hypoxia acts to prevent SARS-CoV-2 infection, suggesting that the hypoxia signalling pathway might offer therapeutic opportunities for the treatment of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Hipóxia Celular/fisiologia , Heparitina Sulfato/metabolismo , Neuropilina-1/metabolismo , Glicoproteína da Espícula de Coronavírus/fisiologia , Sindecana-1/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , Chlorocebus aethiops , Regulação da Expressão Gênica/efeitos dos fármacos , Heparitina Sulfato/genética , Humanos , Neuropilina-1/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Sindecana-1/genética , Células Vero , Ligação Viral/efeitos dos fármacos
14.
Commun Biol ; 4(1): 486, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879833

RESUMO

There is an ongoing need of developing sensitive and specific methods for the determination of SARS-CoV-2 seroconversion. For this purpose, we have developed a multiplexed flow cytometric bead array (C19BA) that allows the identification of IgG and IgM antibodies against three immunogenic proteins simultaneously: the spike receptor-binding domain (RBD), the spike protein subunit 1 (S1) and the nucleoprotein (N). Using different cohorts of samples collected before and after the pandemic, we show that this assay is more sensitive than ELISAs performed in our laboratory. The combination of three viral antigens allows for the interrogation of full seroconversion. Importantly, we have detected N-reactive antibodies in COVID-19-negative individuals. Here we present an immunoassay that can be easily implemented and has superior potential to detect low antibody titers compared to current gold standard serology methods.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , Citometria de Fluxo/métodos , Nucleoproteínas/imunologia , SARS-CoV-2/imunologia , Soroconversão , Antígenos Virais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Imunoensaio/métodos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade
15.
Front Immunol ; 11: 586977, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117401

RESUMO

The syndecan (Sdc) family is comprised of four members of cell surface molecules (Sdc-1 to 4) with different biological functions. Syndecan-3 (Sdc-3) is known to be mainly expressed in the brain and nervous tissue and plays a key role in development, cell adhesion, and migration. Recent studies point to important roles for Sdc-3 in inflammatory disease, but the patterns of expression and significance of Sdc-3 in cancer remains unexplored. Here we show that Sdc-3 expression is upregulated on several cancer types, especially in solid tumors that are known to be hypoxic. The Cancer Genome Atlas program (TCGA) data demonstrated that Sdc-3 expression in the tumor microenvironment positively correlates with a hypoxia gene signature. To confirm a potential cause-effect, we performed experiments with tumor cell lines showing increased expression upon in vitro exposure to 1% oxygen or dimethyloxalylglycine, an inhibitor of prolyl hydroxylases, indicating that Sdc-3 expression is promoted by hypoxia inducible factors (HIFs). HIF-1α was responsible for this upregulation as confirmed by CRISPR-engineered tumor cells. Using single-cell RNA sequencing data of melanoma patients, we show that Sdc-3 is expressed on tumor associated macrophages, cancer cells, and endothelial cells. Syndecan-3 expression positively correlated with a macrophage gene signature across several TCGA cancer types. In vitro experiments demonstrated that hypoxia (1% oxygen) or treatment with IFN-γ stimulate Sdc-3 expression on RAW-264.7 derived macrophages, linking Sdc-3 expression to a proinflammatory response. Syndecan-3 expression correlates with a better patient overall survival in hypoxic melanoma tumors.


Assuntos
Hipóxia Celular/fisiologia , Sindecana-3/metabolismo , Microambiente Tumoral/fisiologia , Humanos
16.
Front Immunol ; 10: 1732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428087

RESUMO

Previous studies indicate that B-lymphocytes play a key role activating diabetogenic T-lymphocytes during the development of autoimmune diabetes. Recently, two transgenic NOD mouse models were generated: the NOD-PerIg and the 116C-NOD mice. In NOD-PerIg mice, B-lymphocytes acquire an activated proliferative phenotype and support accelerated autoimmune diabetes development. In contrast, in 116C-NOD mice, B-lymphocytes display an anergic-like phenotype delaying autoimmune diabetes onset and decreasing disease incidence. The present study further evaluates the T- and B-lymphocyte phenotype in both models. In islet-infiltrating B-lymphocytes (IIBLs) from 116C-NOD mice, the expression of H2-Kd and H2-Ag7 is decreased, whereas that of BAFF, BAFF-R, and TACI is increased. In contrast, IIBLs from NOD-PerIg show an increase in CD86 and FAS expression. In addition, islet-infiltrating T-lymphocytes (IITLs) from NOD-PerIg mice exhibit an increase in PD-1 expression. Moreover, proliferation assays indicate a high capacity of B-lymphocytes from NOD-PerIg mice to secrete high amounts of cytokines and induce T-lymphocyte activation compared to 116C B-lymphocytes. This functional variability between 116C and PerIg B-lymphocytes ultimately results in differences in the ability to shape T-lymphocyte phenotype. These results support the role of B-lymphocytes as key regulators of T-lymphocytes in autoimmune diabetes and provide essential information on the phenotypic characteristics of the T- and B-lymphocytes involved in the autoimmune response in autoimmune diabetes.


Assuntos
Subpopulações de Linfócitos B/imunologia , Diabetes Mellitus Tipo 1/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Apresentação de Antígeno , Autoimunidade , Anergia Clonal , Citocinas/sangue , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Genes de Imunoglobulinas , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Ativação Linfocitária , Linfopoese , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Organismos Livres de Patógenos Específicos , Baço/imunologia , Baço/patologia
17.
Diabetes ; 65(7): 1977-1987, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26961115

RESUMO

While the autoimmune destruction of pancreatic ß-cells underlying type 1 diabetes (1D) development is ultimately mediated by T-cells in NOD mice and also likely humans, B-lymphocytes play an additional key pathogenic role. It appears expression of plasma membrane bound immunoglobulin (Ig) molecules that efficiently capture ß-cell antigens allows autoreactive B-lymphocytes bypassing normal tolerance induction processes to be the subset of antigen presenting cells most efficiently activating diabetogenic T-cells. NOD mice transgenically expressing Ig molecules recognizing antigens that are (insulin) or not (hen egg lysozyme; HEL) expressed by ß-cells have proven useful in dissecting the developmental basis of diabetogenic B-lymphocytes. However, these transgenic Ig specificities were originally selected for their ability to recognize insulin or HEL as foreign, rather than autoantigens. Thus, we generated and characterized NOD mice transgenically expressing an Ig molecule representative of a large proportion of naturally occurring islet-infiltrating B-lymphocytes in NOD mice recognizing the neuronal antigen peripherin. Transgenic peripherin autoreactive B-lymphocytes infiltrate NOD pancreatic islets, acquire an activated proliferative phenotype, and potently support accelerated T1D development. These results support the concept of neuronal autoimmunity as a pathogenic feature of T1D, and targeting such responses could ultimately provide an effective disease intervention approach.

18.
Eur J Immunol ; 46(3): 593-608, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26639224

RESUMO

Autoreactive B lymphocytes play a key role as APCs in diaebetogenesis. However, it remains unclear whether B-cell tolerance is compromised in NOD mice. Here, we describe a new B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse, where the transgenes derive from an islet-infiltrating B lymphocyte of a (8.3-NODxNOR) F1 mouse. The 116C-NOD mouse produces clonal B lymphocytes with pancreatic islet beta cell specificity. The incidence of T1D in 116C-NOD mice is decreased in both genders when compared with NOD mice. Moreover, several immune selection mechanisms (including clonal deletion and anergy) acting on the development, phenotype, and function of autoreactive B lymphocytes during T1D development have been identified in the 116C-NOD mouse. Surprisingly, a more accurate analysis revealed that, despite their anergic phenotype, 116C B cells express some costimulatory molecules after activation, and induce a T-cell shift toward a Th17 phenotype. Furthermore, this shift on T lymphocytes seems to occur not only when both T and B cells contact, but also when helper T (Th) lineage is established. The 116C-NOD mouse model could be useful to elucidate the mechanisms involved in the generation of Th-cell lineages.


Assuntos
Linfócitos B/imunologia , Anergia Clonal , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Tolerância Imunológica/genética , Ativação Linfocitária , Células Th17/imunologia , Animais , Deleção Clonal , Citocinas/genética , Citocinas/imunologia , Tolerância Imunológica/imunologia , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fenótipo , Baço/anatomia & histologia , Baço/citologia , Baço/imunologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...