Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(9): 3081-3090, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30563841

RESUMO

Hepatocyte lipotoxicity is characterized by aberrant mitochondrial metabolism, which predisposes cells to oxidative stress and apoptosis. Previously, we reported that translocation of calcium from the endoplasmic reticulum to mitochondria of palmitate-treated hepatocytes activates anaplerotic flux from glutamine to α-ketoglutarate (αKG), which subsequently enters the citric acid cycle (CAC) for oxidation. We hypothesized that increased glutamine anaplerosis fuels elevations in CAC flux and oxidative stress following palmitate treatment. To test this hypothesis, primary rat hepatocytes or immortalized H4IIEC3 rat hepatoma cells were treated with lipotoxic levels of palmitate while modulating anaplerotic pathways leading to αKG. We found that culture media supplemented with glutamine, glutamate, or dimethyl-αKG increased palmitate lipotoxicity compared with media that lacked these anaplerotic substrates. Knockdown of glutamate-oxaloacetate transaminase activity significantly reduced the lipotoxic effects of palmitate, whereas knockdown of glutamate dehydrogenase (Glud1) had no effect on palmitate lipotoxicity. 13C flux analysis of H4IIEC3 cells co-treated with palmitate and the pan-transaminase inhibitor aminooxyacetic acid confirmed that reductions in lipotoxic markers were associated with decreases in anaplerosis, CAC flux, and oxygen consumption. Taken together, these results demonstrate that lipotoxic palmitate treatments enhance anaplerosis in cultured rat hepatocytes, causing a shift to aberrant transaminase metabolism that fuels CAC dysregulation and oxidative stress.


Assuntos
Aspartato Aminotransferases/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Palmitatos/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Glutamina/metabolismo , Hepatócitos/citologia , Ácidos Cetoglutáricos/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley
2.
J Biol Chem ; 292(44): 18203-18216, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28916726

RESUMO

Many cancer treatments, such as those for managing recalcitrant tumors like pancreatic ductal adenocarcinoma, cause off-target toxicities in normal, healthy tissue, highlighting the need for more tumor-selective chemotherapies. ß-Lapachone is bioactivated by NAD(P)H:quinone oxidoreductase 1 (NQO1). This enzyme exhibits elevated expression in most solid cancers and therefore is a potential cancer-specific target. ß-Lapachone's therapeutic efficacy partially stems from the drug's induction of a futile NQO1-mediated redox cycle that causes high levels of superoxide and then peroxide formation, which damages DNA and causes hyperactivation of poly(ADP-ribose) polymerase, resulting in extensive NAD+/ATP depletion. However, the effects of this drug on energy metabolism due to NAD+ depletion were never described. The futile redox cycle rapidly consumes O2, rendering standard assays of Krebs cycle turnover unusable. In this study, a multimodal analysis, including metabolic imaging using hyperpolarized pyruvate, points to reduced oxidative flux due to NAD+ depletion after ß-lapachone treatment of NQO1+ human pancreatic cancer cells. NAD+-sensitive pathways, such as glycolysis, flux through lactate dehydrogenase, and the citric acid cycle (as inferred by flux through pyruvate dehydrogenase), were down-regulated by ß-lapachone treatment. Changes in flux through these pathways should generate biomarkers useful for in vivo dose responses of ß-lapachone treatment in humans, avoiding toxic side effects. Targeting the enzymes in these pathways for therapeutic treatment may have the potential to synergize with ß-lapachone treatment, creating unique NQO1-selective combinatorial therapies for specific cancers. These findings warrant future studies of intermediary metabolism in patients treated with ß-lapachone.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Naftoquinonas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Pró-Fármacos/farmacologia , Ativação Metabólica , Antineoplásicos/metabolismo , Biomarcadores/metabolismo , Isótopos de Carbono , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Dano ao DNA , Inibidores Enzimáticos/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Metabolômica/métodos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/metabolismo , Análise de Componente Principal , Pró-Fármacos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Pulm Circ ; 7(1): 186-199, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28680578

RESUMO

Pulmonary arterial hypertension (PAH) is increasingly recognized as a systemic disease driven by alteration in the normal functioning of multiple metabolic pathways affecting all of the major carbon substrates, including amino acids. We found that human pulmonary hypertension patients (WHO Group I, PAH) exhibit systemic and pulmonary-specific alterations in glutamine metabolism, with the diseased pulmonary vasculature taking up significantly more glutamine than that of controls. Using cell culture models and transgenic mice expressing PAH-causing BMPR2 mutations, we found that the pulmonary endothelium in PAH shunts significantly more glutamine carbon into the tricarboxylic acid (TCA) cycle than wild-type endothelium. Increased glutamine metabolism through the TCA cycle is required by the endothelium in PAH to survive, to sustain normal energetics, and to manifest the hyperproliferative phenotype characteristic of disease. The strict requirement for glutamine is driven by loss of sirtuin-3 (SIRT3) activity through covalent modification by reactive products of lipid peroxidation. Using 2-hydroxybenzylamine, a scavenger of reactive lipid peroxidation products, we were able to preserve SIRT3 function, to normalize glutamine metabolism, and to prevent the development of PAH in BMPR2 mutant mice. In PAH, targeting glutamine metabolism and the mechanisms that underlie glutamine-driven metabolic reprogramming represent a viable novel avenue for the development of potentially disease-modifying therapeutics that could be rapidly translated to human studies.

4.
Biochim Biophys Acta ; 1861(9 Pt A): 1005-1014, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27249207

RESUMO

Experiments in a variety of cell types, including hepatocytes, consistently demonstrate the acutely lipotoxic effects of saturated fatty acids, such as palmitate (PA), but not unsaturated fatty acids, such as oleate (OA). PA+OA co-treatment fully prevents PA lipotoxicity through mechanisms that are not well defined but which have been previously attributed to more efficient esterification and sequestration of PA into triglycerides (TGs) when OA is abundant. However, this hypothesis has never been directly tested by experimentally modulating the relative partitioning of PA/OA between TGs and other lipid fates in hepatocytes. In this study, we found that addition of OA to PA-treated hepatocytes enhanced TG synthesis, reduced total PA uptake and PA lipid incorporation, decreased phospholipid saturation and rescued PA-induced ER stress and lipoapoptosis. Knockdown of diacylglycerol acyltransferase (DGAT), the rate-limiting step in TG synthesis, significantly reduced TG accumulation without impairing OA-mediated rescue of PA lipotoxicity. In both wild-type and DGAT-knockdown hepatocytes, OA co-treatment significantly reduced PA lipid incorporation and overall phospholipid saturation compared to PA-treated hepatocytes. These data indicate that OA's protective effects do not require increased conversion of PA into inert TGs, but instead may be due to OA's ability to compete against PA for cellular uptake and/or esterification and, thereby, normalize the composition of cellular lipids in the presence of a toxic PA load.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Ácido Oleico/metabolismo , Ácido Palmítico/metabolismo , Triglicerídeos/biossíntese , Animais , Apoptose/genética , Diacilglicerol O-Aciltransferase/metabolismo , Esterificação/genética , Técnicas de Inativação de Genes , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Estresse Oxidativo , Ratos , Triglicerídeos/metabolismo
5.
Cell Chem Biol ; 23(4): 431-2, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105278

RESUMO

In this issue of Cell Chemical Biology, Yao et al. (2016) investigate the makeup of lipid membranes of both cancer and non-transformed cells to reveal that doubling cells preferentially use exogenous fatty acids over de novo synthesis to proliferate.


Assuntos
Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Lipídeos de Membrana/metabolismo , Neoplasias/metabolismo , Animais , Proliferação de Células , Fibroblastos/citologia , Humanos , Neoplasias/patologia
6.
Cancer Metab ; 3: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26137220

RESUMO

BACKGROUND: Pyruvate dehydrogenase (PDH) occupies a central node of intermediary metabolism, converting pyruvate to acetyl-CoA, thus committing carbon derived from glucose to an aerobic fate rather than an anaerobic one. Rapidly proliferating tissues, including human tumors, use PDH to generate energy and macromolecular precursors. However, evidence supports the benefits of constraining maximal PDH activity under certain contexts, including hypoxia and oncogene-induced cell growth. Although PDH is one of the most widely studied enzyme complexes in mammals, its requirement for cell growth is unknown. In this study, we directly addressed whether PDH is required for mammalian cells to proliferate. RESULTS: We genetically suppressed expression of the PDHA1 gene encoding an essential subunit of the PDH complex and characterized the effects on intermediary metabolism and cell proliferation using a combination of stable isotope tracing and growth assays. Surprisingly, rapidly dividing cells tolerated loss of PDH activity without major effects on proliferative rates in complete medium. PDH suppression increased reliance on extracellular lipids, and in some cell lines, reducing lipid availability uncovered a modest growth defect that could be completely reversed by providing exogenous-free fatty acids. PDH suppression also shifted the source of lipogenic acetyl-CoA from glucose to glutamine, and this compensatory pathway required a net reductive isocitrate dehydrogenase (IDH) flux to produce a source of glutamine-derived acetyl-CoA for fatty acids. By deleting the cytosolic isoform of IDH (IDH1), the enhanced contribution of glutamine to the lipogenic acetyl-CoA pool during PDHA1 suppression was eliminated, and growth was modestly suppressed. CONCLUSIONS: Although PDH suppression substantially alters central carbon metabolism, the data indicate that rapid cell proliferation occurs independently of PDH activity. Our findings reveal that this central enzyme is essentially dispensable for growth and proliferation of both primary cells and established cell lines. We also identify the compensatory mechanisms that are activated under PDH deficiency, namely scavenging of extracellular lipids and lipogenic acetyl-CoA production from reductive glutamine metabolism through IDH1.

8.
Mol Cell ; 56(3): 400-413, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25458841

RESUMO

Cancer cells are typically subject to profound metabolic alterations, including the Warburg effect wherein cancer cells oxidize a decreased fraction of the pyruvate generated from glycolysis. We show herein that the mitochondrial pyruvate carrier (MPC), composed of the products of the MPC1 and MPC2 genes, modulates fractional pyruvate oxidation. MPC1 is deleted or underexpressed in multiple cancers and correlates with poor prognosis. Cancer cells re-expressing MPC1 and MPC2 display increased mitochondrial pyruvate oxidation, with no changes in cell growth in adherent culture. MPC re-expression exerted profound effects in anchorage-independent growth conditions, however, including impaired colony formation in soft agar, spheroid formation, and xenograft growth. We also observed a decrease in markers of stemness and traced the growth effects of MPC expression to the stem cell compartment. We propose that reduced MPC activity is an important aspect of cancer metabolism, perhaps through altering the maintenance and fate of stem cells.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proliferação de Células , Glicólise , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Neoplasias do Colo , Células HEK293 , Células HT29 , Humanos , Camundongos Nus , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos , Transplante de Neoplasias , Oxirredução
9.
Mol Metab ; 3(5): 544-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25061559

RESUMO

Palmitate overload induces hepatic cell dysfunction characterized by enhanced apoptosis and altered citric acid cycle (CAC) metabolism; however, the mechanism of how this occurs is incompletely understood. We hypothesize that elevated doses of palmitate disrupt intracellular calcium homeostasis resulting in a net flux of calcium from the ER to mitochondria, activating aberrant oxidative metabolism. We treated primary hepatocytes and H4IIEC3 cells with palmitate and calcium chelators to identify the roles of intracellular calcium flux in lipotoxicity. We then applied (13)C metabolic flux analysis (MFA) to determine the impact of calcium in promoting palmitate-stimulated mitochondrial alterations. Co-treatment with the calcium-specific chelator BAPTA resulted in a suppression of markers for apoptosis and oxygen consumption. Additionally, (13)C MFA revealed that BAPTA co-treated cells had reduced CAC fluxes compared to cells treated with palmitate alone. Our results demonstrate that palmitate-induced lipoapoptosis is dependent on calcium-stimulated mitochondrial activation, which induces oxidative stress.

10.
J Lipid Res ; 55(7): 1478-88, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24859739

RESUMO

High levels of saturated FAs (SFAs) are acutely toxic to a variety of cell types, including hepatocytes, and have been associated with diseases such as type 2 diabetes and nonalcoholic fatty liver disease. SFA accumulation has been previously shown to degrade endoplasmic reticulum (ER) function leading to other manifestations of the lipoapoptotic cascade. We hypothesized that dysfunctional phospholipid (PL) metabolism is an initiating factor in this ER stress response. Treatment of either primary hepatocytes or H4IIEC3 cells with the SFA palmitate resulted in dramatic dilation of the ER membrane, coinciding with other markers of organelle dysfunction. This was accompanied by increased de novo glycerolipid synthesis, significant elevation of dipalmitoyl phosphatidic acid, diacylglycerol, and total PL content in H4IIEC3 cells. Supplementation with oleate (OA) reversed these markers of palmitate (PA)-induced lipotoxicity. OA/PA cotreatment modulated the distribution of PA between lipid classes, increasing the flux toward triacylglycerols while reducing its incorporation into PLs. Similar trends were demonstrated in both primary hepatocytes and the H4IIEC3 hepatoma cell line. Overall, these findings suggest that modifying the FA composition of structural PLs can protect hepatocytes from PA-induced ER stress and associated lipotoxicity.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Ácido Palmítico/toxicidade , Fosfolipídeos/farmacologia , Animais , Linhagem Celular Tumoral , Hepatócitos/patologia , Fígado/patologia , Ratos , Ratos Sprague-Dawley
11.
Metabolism ; 63(2): 283-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24286856

RESUMO

OBJECTIVE: Hepatic lipotoxicity is characterized by reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and excessive apoptosis, but the precise sequence of biochemical events leading to oxidative damage and cell death remains unclear. The goal of this study was to delineate the role of mitochondrial metabolism in mediating hepatocyte lipotoxicity. MATERIALS/METHODS: We treated H4IIEC3 rat hepatoma cells with free fatty acids in combination with antioxidants and mitochondrial inhibitors designed to block key events in the progression toward apoptosis. We then applied (13)C metabolic flux analysis (MFA) to quantify mitochondrial pathway alterations associated with these treatments. RESULTS: Treatment with palmitate alone led to a doubling in oxygen uptake rate and in most mitochondrial fluxes. Supplementing culture media with the antioxidant N-acetyl-cysteine (NAC) reduced ROS accumulation and caspase activation and partially restored cell viability. However, (13)C MFA revealed that treatment with NAC did not normalize palmitate-induced metabolic alterations, indicating that neither elevated ROS nor downstream apoptotic events contributed to mitochondrial activation. To directly limit mitochondrial metabolism, the complex I inhibitor phenformin was added to cells treated with palmitate. Phenformin addition eliminated abnormal ROS accumulation, prevented the appearance of apoptotic markers, and normalized mitochondrial carbon flow. Further studies revealed that glutamine provided the primary fuel for elevated mitochondrial metabolism in the presence of palmitate, rather than fatty acid beta-oxidation, and that glutamine consumption could be reduced through co-treatment with phenformin but not NAC. CONCLUSION: Our results indicate that ROS accumulation in palmitate-treated H4IIEC3 cells occurs downstream of altered mitochondrial oxidative metabolism, which is independent of beta-oxidation and precedes apoptosis initiation.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Apoptose , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Palmitatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Isótopos de Carbono , Caspases Efetoras/efeitos dos fármacos , Caspases Efetoras/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Análise do Fluxo Metabólico/métodos , Estresse Oxidativo/efeitos dos fármacos , Palmitatos/metabolismo , Ratos
12.
Prog Lipid Res ; 52(1): 165-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23178552

RESUMO

The steady rise in Western obesity rates has been closely linked to significant increases in a multitude of accompanying health problems including non-alcoholic fatty liver disease (NAFLD). NAFLD severity ranges from simple steatosis to acute steatohepatitis, but the molecular mechanisms controlling progression of this disease are poorly understood. Recent literature suggests that elevated free fatty acids (FFAs), especially saturated FFAs, may play an important role in lipotoxic mechanisms, both in experimental models and in NAFLD patients. This review highlights important cellular pathways involved in hepatic lipotoxicity and how the degree of intrahepatic lipid saturation controls cell fate in response to an elevated FFA load. Relevant cellular processes that have been causally linked to lipid-induced apoptosis, known as lipoapoptosis, include endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial dysfunction, and Jun N-terminal kinase (JNK) signaling. In contrast, increased triglyceride synthesis has been shown to have a protective effect against lipotoxicity, despite being one of the hallmark traits of NAFLD. Developing a more nuanced understanding of the molecular mechanisms underlying NAFLD progression will lead to more targeted and effective therapeutics for this increasingly prevalent disease, which to date has no proven pharmacologic treatment to prevent or reverse its course.


Assuntos
Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Animais , Ensaios Clínicos como Assunto , Progressão da Doença , Retículo Endoplasmático/metabolismo , Fígado Gorduroso/terapia , Humanos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/metabolismo
13.
Theriogenology ; 78(2): 334-44, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22494680

RESUMO

Sperm viability in aquatic species is increasingly being evaluated by motility analysis via computer-assisted sperm analysis (CASA) following activation of sperm with manual dilution and mixing by hand. User variation can limit the speed and control over the activation process, preventing consistent motility analysis. This is further complicated by the short interval (i.e., less than 15 s) of burst motility in these species. The objectives of this study were to develop a staggered herringbone microfluidic mixer to: 1) activate small volumes of Danio pearl zebrafish (Danio albolineatus) sperm by rapid mixing with diluent, and 2) position sperm in a viewing chamber for motility evaluation using a standard CASA system. A herringbone micromixer was fabricated in polydimethylsiloxane (PDMS) to yield high quality smooth surfaces. Based on fluorescence microscopy, mixing efficiency exceeding 90% was achieved within 5 s for a range of flow rates (from 50 to 250 µL/h), with a correlation of mixing distances and mixing efficiency. For example, at the nominal flow rate of 100 µL/h, there was a significant difference in mixing efficiency between 3.5 mm (75±4%; mean±SD) and 7 mm (92±2%; P=0.002). The PDMS micromixer, integrated with standard volumetric slides, demonstrated activation of fresh zebrafish sperm with reduced user variation, greater control, and without morphologic damage to sperm. Analysis of zebrafish sperm viability by CASA revealed a statistically higher motility rate for activation by micromixing (56±4%) than manual activation (45±7%; n=5, P=0.011). This micromixer represented a first step in streamlining methods for consistent, rapid assessment of sperm quality for zebrafish and other aquatic species. The capability to rapidly activate sperm and consistently measure motility with CASA using the PDMS micromixer described herein will improve studies of germplasm physiology and cryopreservation.


Assuntos
Técnicas Analíticas Microfluídicas/veterinária , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Animais , Masculino , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA