Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139119

RESUMO

Klebsiella pneumoniae is a pathogen associated with various infection types, which often exhibits multiple antibiotic resistance. Phages, or bacterial viruses, have an ability to specifically target and destroy K. pneumoniae, offering a potential means of combatting multidrug-resistant infections. Phage enzymes are another promising therapeutic agent that can break down bacterial capsular polysaccharide, which shields K. pneumoniae from the immune response and external factors. In this study, Klebsiella phage K5 was isolated; this phage is active against Klebsiella pneumoniae with the capsular type K21. It was demonstrated that the phage can effectively lyse the host culture. The adsorption apparatus of the phage has revealed two receptor-binding proteins (RBPs) with predicted polysaccharide depolymerising activity. A recombinant form of both RBPs was obtained and experiments showed that one of them depolymerised the capsular polysaccharide K21. The structure of this polysaccharide and its degradation fragments were analysed. The second receptor-binding protein showed no activity on capsular polysaccharide of any of the 31 capsule types tested, so the substrate for this enzyme remains to be determined in the future. Klebsiella phage K5 may be considered a useful agent against Klebsiella infections.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Humanos , Klebsiella , Klebsiella pneumoniae/metabolismo , Bacteriófagos/fisiologia , Infecções por Klebsiella/microbiologia , Polissacarídeos Bacterianos/metabolismo
3.
PLoS One ; 10(10): e0139429, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431424

RESUMO

The canonical protein tyrosine phosphatase PTP1B is an important regulator of diverse cellular signaling networks. PTP1B has long been thought to exert its influence solely from its perch on the endoplasmic reticulum (ER); however, an additional subpopulation of PTP1B has recently been detected in mitochondria extracted from rat brain tissue. Here, we show that PTP1B's mitochondrial localization is general (observed across diverse mammalian cell lines) and sensitively dependent on the transmembrane domain length, C-terminal charge and hydropathy of its short (≤35 amino acid) tail anchor. Our electron microscopy of specific DAB precipitation revealed that PTP1B localizes via its tail anchor to the outer mitochondrial membrane (OMM), with fluorescence lifetime imaging microscopy establishing that this OMM pool contributes to the previously reported cytoplasmic interaction of PTP1B with endocytosed epidermal growth factor receptor. We additionally examined the mechanism of PTP1B's insertion into the ER membrane through heterologous expression of PTP1B's tail anchor in wild-type yeast and yeast mutants of major conserved ER insertion pathways: In none of these yeast strains was ER targeting significantly impeded, providing in vivo support for the hypothesis of spontaneous membrane insertion (as previously demonstrated in vitro). Further functional elucidation of the newly recognized mitochondrial pool of PTP1B will likely be important for understanding its complex roles in cellular responses to external stimuli, cell proliferation and diseased states.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Endocitose/fisiologia , Receptores ErbB/metabolismo , Membranas Mitocondriais/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transdução de Sinais/fisiologia
4.
J Cell Sci ; 127(Pt 5): 977-93, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413173

RESUMO

Previous studies have demonstrated that membrane tubule-mediated transport events in biosynthetic and endocytic routes require phospholipase A2 (PLA2) activity. Here, we show that cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) is targeted to the membrane compartments of the clathrin-independent endocytic route through a C-terminal stretch of positively charged amino acids, which allows the enzyme to interact with phosphoinositide lipids [especially PI(4,5)P2] that are enriched in clathrin-independent endosomes. Ablation of cPLA2ε suppressed the formation of tubular elements that carry internalized clathrin-independent cargoes, such as MHC-I, CD147 and CD55, back to the cell surface and, therefore, caused their intracellular retention. The ability of cPLA2ε to support recycling through tubule formation relies on the catalytic activity of the enzyme, because the inactive cPLA2ε(S420A) mutant was not able to recover either tubule growth or transport from clathrin-independent endosomes. Taken together, our findings indicate that cPLA2ε is a new important regulator of trafficking processes within the clathrin-independent endocytic and recycling route. The affinity of cPLA2ε for this pathway supports a new hypothesis that different PLA2 enzymes use selective targeting mechanisms to regulate tubule formation locally during specific trafficking steps in the secretory and/or endocytic systems.


Assuntos
Clatrina/metabolismo , Endocitose , Fosfolipases A2 do Grupo IV/fisiologia , Sequência de Aminoácidos , Sinalização do Cálcio , Endossomos/metabolismo , Fosfolipases A2 do Grupo IV/química , Células HeLa , Humanos , Hidrólise , Dados de Sequência Molecular , Fosfatidilinositóis/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico
5.
EMBO J ; 31(24): 4535-46, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23178595

RESUMO

Sphingomyelin and cholesterol can assemble into domains and segregate from other lipids in the membranes. These domains are reported to function as platforms for protein transport and signalling. Do similar domains exist in the Golgi membranes and are they required for protein secretion? We tested this hypothesis by using D-ceramide-C6 to manipulate lipid homeostasis of the Golgi membranes. Lipidomics of the Golgi membranes isolated from D-ceramide-C6-treated HeLa cells revealed an increase in the levels of C6-sphingomyelin, C6-glucosylceramide, and diacylglycerol. D-ceramide-C6 treatment in HeLa cells inhibited transport carrier formation at the Golgi membranes without affecting the fusion of incoming carriers. The defect in protein secretion as a result of D-ceramide-C6 treatment was alleviated by knockdown of the sphingomyelin synthases 1 and 2. C6-sphingomyelin prevented liquid-ordered domain formation in giant unilamellar vesicles and reduced the lipid order in the Golgi membranes of HeLa cells. These findings highlight the importance of a regulated production and organization of sphingomyelin in the biogenesis of transport carriers at the Golgi membranes.


Assuntos
Complexo de Golgi/química , Complexo de Golgi/fisiologia , Lipídeos de Membrana/análise , Microdomínios da Membrana/fisiologia , Proteínas/metabolismo , Esfingomielinas/metabolismo , Vesículas Transportadoras/fisiologia , Ceramidas/farmacologia , Diglicerídeos , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Lipídeos de Membrana/isolamento & purificação , Microdomínios da Membrana/química , Microscopia Eletrônica , Microscopia de Fluorescência , Oligonucleotídeos/genética , Interferência de RNA , Espectrometria de Fluorescência , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Vesículas Transportadoras/química
6.
Mol Biol Cell ; 20(9): 2413-27, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19261807

RESUMO

Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). FGD1 encodes a guanine nucleotide exchange factor that specifically activates the GTPase Cdc42. In turn, Cdc42 is an important regulator of membrane trafficking, although little is known about FGD1 involvement in this process. During development, FGD1 is highly expressed during bone growth and mineralization, and therefore a lack of the functional protein leads to a severe phenotype. Whether the secretion of proteins, which is a process essential for bone formation, is altered by mutations in FGD1 is of great interest. We initially show here that FGD1 is preferentially associated with the trans-Golgi network (TGN), suggesting its involvement in export of proteins from the Golgi. Indeed, expression of a dominant-negative FGD1 mutant and RNA interference of FGD1 both resulted in a reduction in post-Golgi transport of various cargoes (including bone-specific proteins in osteoblasts). Live-cell imaging reveals that formation of post-Golgi transport intermediates directed to the cell surface is inhibited in FGD1-deficient cells, apparently due to an impairment of TGN membrane extension along microtubules. These effects depend on FGD1 regulation of Cdc42 activation and its association with the Golgi membranes, and they may contribute to FGDY pathogenesis.


Assuntos
Complexo de Golgi/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Inativação Gênica , Complexo de Golgi/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/deficiência , Guanosina Difosfato/metabolismo , Humanos , Membranas Intracelulares/enzimologia , Membranas Intracelulares/ultraestrutura , Camundongos , Mimetismo Molecular , Proteínas Mutantes/metabolismo , Osteoblastos/metabolismo , Ligação Proteica , Transporte Proteico , Rede trans-Golgi/enzimologia , Rede trans-Golgi/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...