Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38077066

RESUMO

Burgeoning evidence demonstrates that effects of environmental exposures can be transmitted to subsequent generations through the germline without DNA mutations1,2. This phenomenon remains controversial because underlying mechanisms have not been identified. Therefore, understanding how effects of environmental exposures are transmitted to unexposed generations without DNA mutations is a fundamental unanswered question in biology. Here, we used an established murine model of male-specific transgenerational obesity to show that exposure to the obesogen tributyltin (TBT) elicited heritable changes in chromatin interactions (CIs) in primordial germ cells (PGCs). New CIs were formed within the Ide gene encoding Insulin Degrading Enzyme in the directly exposed PGCs, then stably maintained in PGCs of the subsequent (unexposed) two generations. Concomitantly, Ide mRNA expression was decreased in livers of male descendants from the exposed dams. These males were hyperinsulinemic and hyperglycemic, phenocopying Ide-deficient mice that are predisposed to adult-onset, diet-induced obesity. Creation of new CIs in PGCs, suppression of hepatic Ide mRNA, increased fat mass, hyperinsulinemia and hyperglycemia were male-specific. Our results provide a plausible molecular mechanism underlying transmission of the transgenerational predisposition to obesity caused by gestational exposure to an environmental obesogen. They also provide an entry point for future studies aimed at understanding how environmental exposures alter chromatin structure to influence physiology across multiple generations in mammals.

2.
Environ Int ; 157: 106822, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455191

RESUMO

BACKGROUND: Endocrine disrupting chemicals (EDCs) contribute to the etiology of metabolic disorders such as obesity, insulin resistance and hepatic dysfunction. Concern is growing about the consequences of perinatal EDC exposure on disease predisposition later in life. Metabolomics are promising approaches for studying long-term consequences of early life EDC exposure. These approaches allow for the identification and characterization of biomarkers of direct or ancestral exposures that could be diagnostic for individual susceptibility to disease and help to understand mechanisms through which EDCs act. OBJECTIVES: We sought to identify metabolomic fingerprints in mice ancestrally exposed to the model obesogen tributyltin (TBT), to assess whether metabolomics could discriminate potential trans-generational susceptibility to obesity and recognize metabolic pathways modulated by ancestral TBT exposure. METHODS: We used non-targeted 1H NMR metabolomic analyses of plasma and liver samples collected from male and female mice ancestrally exposed to TBT in two independent transgenerational experiments in which F3 and F4 males became obese when challenged with increased dietary fat. RESULTS: Metabolomics confirmed transgenerational obesogenic effects of environmentally relevant doses of TBT in F3 and F4 males, in two independent studies. Although females never became obese, their specific metabolomic fingerprint evidenced distinct transgenerational effects of TBT in female mice consistent with impaired capacity for liver biotransformation. DISCUSSION: This study is the first application of metabolomics to unveil the transgenerational effects of EDC exposure. Very early, significant changes in the plasma metabolome were observed in animals ancestrally exposed to TBT. These changes preceded the onset of obesogenic effects elicited by increased dietary fat in the TBT groups, and which ultimately resulted in significant changes in the liver metabolome. Development of metabolomic fingerprints could facilitate the identification of individuals carrying the signature of ancestral obesogen exposure that might increase their susceptibility to other risk factor such as increased dietary fat.


Assuntos
Disruptores Endócrinos , Compostos de Trialquitina , Animais , Disruptores Endócrinos/toxicidade , Feminino , Masculino , Metabolômica , Camundongos , Obesidade/induzido quimicamente , Gravidez , Compostos de Trialquitina/toxicidade
4.
Environ Health Perspect ; 128(4): 47011, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32352317

RESUMO

BACKGROUND: Polychlorinated biphenyls (PCBs) are environmental toxicants; PCB exposure has been associated with adverse effects on wildlife and humans. However, the mechanisms underlying these adverse effects are not fully understood. The steroid and xenobiotic receptor [SXR; also known as the pregnane X receptor (PXR) and formally known as NR1I2] is a nuclear hormone receptor that regulates inducible metabolism of drugs and xenobiotics and is activated or inhibited by various PCB congeners. OBJECTIVES: The aim of this study was to investigate the effects of exposure to PCB-153, the most prevalent PCB congener in human tissues, on SXR knockout mice (SXRKO) and to elucidate the role of SXR in PCB-153 metabolism and promotion of its harmful effects. METHODS: Wild-type (WT) and SXRKO mice were chronically or perinatally exposed to a low dose (54µg/kg/d) of PCB-153. Blood, livers, and spleens were analyzed using transcriptome sequencing (RNA-seq) and molecular techniques to investigate the impacts of exposure on metabolism, oxidative stress, and hematological parameters. RESULTS: SXRKO mice perinatally exposed to PCB-153 displayed elevated oxidative stress, symptoms of hemolytic anemia, and premature death. Transcriptomal analysis revealed that expression of genes involved in metabolic processes was altered in SXRKO mice. Elevated levels of the PCB-153 metabolite, 3-OH-PCB-153, were found in exposed SXRKO mice compared to exposed WT mice. Blood hemoglobin (HGB) levels were lower throughout the lifespan, and the occurrence of intestinal tumors was larger in SXRKO mice chronically exposed to PCB-153 compared to vehicle and WT controls. DISCUSSION: Our results suggest that altered metabolism induced by SXR loss of function resulted in the accumulation of hydroxylated metabolites upon exposure to PCB-153, leading to oxidative stress, hemolytic anemia, and tumor development in a mouse model. These results support a major role for SXR/PXR in protection against xenobiotic-induced oxidative stress by maintaining proper metabolism in response to PCB-153 exposure. This role of SXR could be generally applicable to other environmental toxicants as well as pharmaceutical drugs. https://doi.org/10.1289/EHP6262.


Assuntos
Poluentes Ambientais/metabolismo , Exposição Materna/efeitos adversos , Bifenilos Policlorados/metabolismo , Receptor de Pregnano X/metabolismo , Substâncias Protetoras/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout
5.
Endocrinology ; 161(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32067051

RESUMO

The incidence of obesity has reached an all-time high, and this increase is observed worldwide. There is a growing need to understand all the factors that contribute to obesity to effectively treat and prevent it and associated comorbidities. The obesogen hypothesis proposes that there are chemicals in our environment termed obesogens that can affect individual susceptibility to obesity and thus help explain the recent large increases in obesity. This review discusses current advances in our understanding of how obesogens act to affect health and obesity susceptibility. Newly discovered obesogens and potential obesogens are discussed, together with future directions for research that may help to reduce the impact of these pervasive chemicals.


Assuntos
Adipogenia/efeitos dos fármacos , Poluentes Ambientais/efeitos adversos , Obesidade/induzido quimicamente , Animais , Feminino , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal
6.
J Immunol ; 193(1): 139-49, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24860191

RESUMO

The balance between controlling infection and limiting inflammation is particularly precarious in the brain because of its unique vulnerability to the toxic effects of inflammation. Astrocytes have been implicated as key regulators of neuroinflammation in CNS infections, including infection with Toxoplasma gondii, a protozoan parasite that naturally establishes a chronic CNS infection in mice and humans. In CNS toxoplasmosis, astrocytes are critical to controlling parasite growth. They secrete proinflammatory cytokines and physically encircle parasites. However, the molecular mechanisms used by astrocytes to limit neuroinflammation during toxoplasmic encephalitis have not yet been identified. TGF-ß signaling in astrocytes is of particular interest because TGF-ß is universally upregulated during CNS infection and serves master regulatory and primarily anti-inflammatory functions. We report in this study that TGF-ß signaling is activated in astrocytes during toxoplasmic encephalitis and that inhibition of astrocytic TGF-ß signaling increases immune cell infiltration, uncouples proinflammatory cytokine and chemokine production from CNS parasite burden, and increases neuronal injury. Remarkably, we show that the effects of inhibiting astrocytic TGF-ß signaling are independent of parasite burden and the ability of GFAP(+) astrocytes to physically encircle parasites.


Assuntos
Astrócitos/imunologia , Neurônios/imunologia , Transdução de Sinais/imunologia , Toxoplasma/imunologia , Toxoplasmose Cerebral/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Astrócitos/parasitologia , Astrócitos/patologia , Quimiocinas/genética , Quimiocinas/imunologia , Proteína Glial Fibrilar Ácida , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Neurônios/parasitologia , Neurônios/patologia , Transdução de Sinais/genética , Toxoplasma/genética , Toxoplasmose Cerebral/genética , Toxoplasmose Cerebral/patologia , Fator de Crescimento Transformador beta/genética , Regulação para Cima/genética , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA