Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36297294

RESUMO

There is an unmet need for novel therapeutic tools relieving chronic pain. Hydrogen sulfide (H2S) is highly involved in pain processes; however, the development of ideal matrices for sulfide donor compounds remains a great pharmaceutical challenge. We aimed to establish a suitable transdermal therapeutic system (TTS) using the H2S donor diallyl disulfide (DADS) as a model compound. After the preparation of DADS, its solubility was investigated in different liquid excipients (propylene glycol, polyethylene glycol, silicone oil) and its membrane diffusivity was assessed in silicone matrices of different compositions. Drug-releasing properties of DADS-containing patches with different silicone oil contents were determined with Franz and flow-through cells. We found a correlation between the liquid excipient content of the patch and the diffusion rate of DADS. DADS showed the best solubility in dimethyl silicone oil, and the diffusion constant was proportional to the amount of oil above the 3 m/m% threshold value. The 8-day-old patch showed a significantly lower, but better-regulated, drug release over time than the 4-day-old one. In conclusion, the silicone-based polymer matrix developed in this study is suitable for stable storage and optimal release of DADS, providing a good basis for a TTS applied in chronic pain.

2.
Front Pharmacol ; 13: 847788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355719

RESUMO

G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.

3.
Nat Commun ; 12(1): 6505, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764251

RESUMO

Immunolabeling and autoradiography have traditionally been applied as the methods-of-choice to visualize and collect molecular information about physiological and pathological processes. Here, we introduce PharmacoSTORM super-resolution imaging that combines the complementary advantages of these approaches and enables cell-type- and compartment-specific nanoscale molecular measurements. We exploited rational chemical design for fluorophore-tagged high-affinity receptor ligands and an enzyme inhibitor; and demonstrated broad PharmacoSTORM applicability for three protein classes and for cariprazine, a clinically approved antipsychotic and antidepressant drug. Because the neurobiological substrate of cariprazine has remained elusive, we took advantage of PharmacoSTORM to provide in vivo evidence that cariprazine predominantly binds to D3 dopamine receptors on Islands of Calleja granule cell axons but avoids dopaminergic terminals. These findings show that PharmacoSTORM helps to quantify drug-target interaction sites at the nanoscale level in a cell-type- and subcellular context-dependent manner and within complex tissue preparations. Moreover, the results highlight the underappreciated neuropsychiatric significance of the Islands of Calleja in the ventral forebrain.


Assuntos
Ínsulas Olfatórias/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo
4.
Bioorg Chem ; 111: 104832, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826962

RESUMO

In addition to the orthosteric binding pocket (OBP) of GPCRs, recent structural studies have revealed that there are several allosteric sites available for pharmacological intervention. The secondary binding pocket (SBP) of aminergic GPCRs is located in the extracellular vestibule of these receptors, and it has been suggested to be a potential selectivity pocket for bitopic ligands. Here, we applied a virtual screening protocol based on fragment docking to the SBP of the orthosteric ligand-receptor complex. This strategy was employed for a number of aminergic receptors. First, we designed dopamine D3 preferring bitopic compounds from a D2 selective orthosteric ligand. Next, we designed 5-HT2B selective bitopic compounds starting from the 5-HT1B preferring ergoline core of LSD. Comparing the serotonergic profiles of the new derivatives to that of LSD, we found that these derivatives became significantly biased towards the desired 5-HT2B receptor target. Finally, addressing the known limitations of H1 antihistamines, our protocol was successfully used to eliminate the well-known side effects related to the muscarinic M1 activity of amitriptyline while preserving H1 potency in some of the designed bitopic compounds. These applications highlight the usefulness of our new virtual screening protocol and offer a powerful strategy towards bitopic GPCR ligands with designed receptor profiles.


Assuntos
Pirimidinonas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Ureia/farmacologia , Sítio Alostérico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Pirimidinonas/síntese química , Pirimidinonas/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
5.
Chem Commun (Camb) ; 56(91): 14167-14170, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33079104

RESUMO

Receptor function is traditionally controlled from the orthosteric binding site of G-protein coupled receptors. Here, we show that the functional activity and signalling of human dopamine D2 and D3 receptor ligands can be fine-tuned from the extracellular secondary binding pocket (SBP) located far from the signalling interface suggesting optimization of the SBP binding part of bitopic ligands might be a useful strategy to develop GPCR ligands with designed functional and signalling profile.


Assuntos
Antipsicóticos/farmacologia , Piperazinas/farmacologia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Antipsicóticos/síntese química , Antipsicóticos/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Transdução de Sinais/efeitos dos fármacos
6.
Eur J Med Chem ; 207: 112836, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971426

RESUMO

Targeted covalent inhibitors represent a viable strategy to block protein kinases involved in different disease pathologies. Although a number of computational protocols have been published for identifying druggable cysteines, experimental approaches are limited for mapping the reactivity and accessibility of these residues. Here, we present a ligand based approach using a toolbox of fragment-sized molecules with identical scaffold but equipped with diverse covalent warheads. Our library represents a unique opportunity for the efficient integration of warhead-optimization and target-validation into the covalent drug development process. Screening this probe kit against multiple kinases could experimentally characterize the accessibility and reactivity of the targeted cysteines and helped to identify suitable warheads for designed covalent inhibitors. The usefulness of this approach has been confirmed retrospectively on Janus kinase 3 (JAK3). Furthermore, representing a prospective validation, we identified Maternal embryonic leucine zipper kinase (MELK), as a tractable covalent target. Covalently labelling and biochemical inhibition of MELK would suggest an alternative covalent strategy for MELK inhibitor programs.


Assuntos
Cisteína/metabolismo , Janus Quinase 3/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Transporte de Elétrons , Janus Quinase 3/antagonistas & inibidores , Ligantes , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
7.
RSC Med Chem ; 11(5): 552-558, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479656

RESUMO

One of the key motifs of type I kinase inhibitors is their interactions with the hinge region of ATP binding sites. These interactions contribute significantly to the potency of the inhibitors; however, only a tiny fraction of the available chemical space has been explored with kinase inhibitors reported in the last twenty years. This paper describes a workflow utilizing docking with rDock and dynamic undocking (DUck) for the virtual screening of fragment libraries in order to identify fragments that bind to the kinase hinge region. We have identified 8-amino-2H-isoquinolin-1-one (MR1), a novel and potent hinge binding fragment, which was experimentally tested on a diverse set of kinases, and is hereby suggested for future fragment growing or merging efforts against various kinases, particularly MELK. Direct binding of MR1 to MELK was confirmed by STD-NMR, and its binding to the ATP-pocket was confirmed by a new competitive binding assay based on microscale thermophoresis.

8.
Bioorg Med Chem ; 27(8): 1497-1508, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30833158

RESUMO

Structure based optimization of B39, an indazole-based low micromolar JAK2 virtual screening hit is reported. Analysing the effect of certain modifications on the activity and selectivity of the analogues suggested that these parameters are influenced by water molecules available in the binding site. Simulation of water networks in combination with docking enabled us to identify the key waters and to optimize our primary hit into a low nanomolar JAK2 lead with promising selectivity over JAK1.


Assuntos
Indazóis/química , Indazóis/farmacologia , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação/efeitos dos fármacos , Desenho de Fármacos , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/química , Janus Quinase 1/metabolismo , Janus Quinase 2/química , Janus Quinase 2/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...