Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(33): 39752-39764, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37566407

RESUMO

Molecular or supramolecular materials that can self-organize into columns such as discotic liquid crystals are of interest for several applications in the field of optoelectronics. We show in this work that red near-infrared (NIR)-emissive metal cluster compounds of general formula Na2Mo6X8iCl6 (Xi = Cl or Br) can be readily complexed with discotic liquid crystals containing a crown ether. Three cavity sizes have been tested with crown ethers bearing 4, 5, or 6 oxygen atoms. In all cases, 1:1 complexes were formed, thanks to the well-known supramolecular interactions existing between the Na+ cations of the metal cluster salt and the crown ether derivatives. All obtained hybrids are homogeneous, emit in the red NIR region, and show liquid crystalline properties on a wider temperature range than their precursors. Charge transport properties have been investigated by using a space charge limited current device. Obtained results demonstrate that metal cluster compounds can enhance the charge carrier mobility by 5 orders of magnitude compared to the native discotic organic ligands. Considering that the presented organic crown ether derivatives are not the best candidates to design optoelectronic devices because of their inherently low conductivity, but that similar compounds were developed to design proton conductive porous framework, our results open promising perspectives for the use of metal cluster compounds in devices dedicated to such a field.

2.
Phys Chem Chem Phys ; 24(36): 21617-21630, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35938232

RESUMO

Aiming at merocyanine dyes with good linear optical and self-assembly properties, a series of rigid mono-, bi- and tricyclic merocyanines with O- and N-donor units as well as keto or malodinitrile acceptor units was prepared by a convergent approach. With particular focus on tailoring the donor unit, a selection of appropriate derivatives was investigated with respect to their dye properties in solution and in the bulk (UV/Vis, fluorescence, temperature-dependent fluorescence, lifetime). Determination of fluorescence quantum yields revealed the importance of the donor unit and the chromophore size. Larger chromophores and N-donors were beneficial for strong emission in solution, whereas small chromophores and O-donors favored emission in the solid state. To rationalize the different optical properties depending on their donor unit, density functional theory (DFT) calculations were performed. Liquid crystalline derivatives were additionally studied by optical polarization microscopy, differential scanning calorimetry, and X-ray diffraction experiments. For merocyanines with O-donor, fluorinated side chains were mandatory to get stable enantiotropic SmA phases regardless of chromophore size, side chain lengths or acceptor unit. Increased mesophase widths (up to 134 K) were observed upon increasing the chromophore lengths, chain lengths (up to C12) and F/C ratio in the side chain. On the other hand, merocyanines with N-donor and keto acceptor showed enantiotropic SmA phases in the presence of simple alkoxy side chains. The tricyclic merocyanine with N-donor shows an additional SmE phase at lower temperatures. The results revealed the importance of the donor unit to balance optical and mesomorphic properties in merocynanines.

3.
RSC Adv ; 10(40): 23999-24016, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517358

RESUMO

In ionic liquid crystals (ILCs) tilted mesophases such as SmC required for electro-optic devices are quite rare. We report a design concept that induced the SmC phase and enabled de Vries-like behaviour in ILCs. For this purpose, we synthesized and characterized a library of ILC derivatives ImR(On,Ym)X which consist of a rigid central fluorenone core containing an alkoxy or thioether side chain and connected via a flexible spacer to an imidazolium head group. The mesomorphic properties were studied by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (XRD). Temperature-dependent measurements of smectic layer spacing d by small-angle X-ray scattering (SAXS) and of optical tilt angles by POM demonstrate that ILCs ImR(On,Ym)X undergo SmA-SmC phase transitions with maximum layer contraction values between 0.4% and 2.1%. The lowest reduction factor R of 0.2 at the reduced temperature T - T AC = -10 K was calculated for Im(O12,S14)Br. Electron density calculations indicated a bilayer structure. Furthermore, temperature dependent emission studies show that self-assembling has a strong influence on the emission intensity of these ILCs.

4.
Dalton Trans ; 47(40): 14340-14351, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30187902

RESUMO

Crown ethers and their derivatives are versatile building blocks for the design of supramolecular materials. They can be functionalized at will and are well known for their abilities to complex with alkali cations. Here, we show that emissive lanthanide free hybrid materials can be generated by using such building blocks. The organic tribenzo[18]crown-6 central core was functionalized via six-fold Suzuki cross-coupling as a key reaction with three o-terphenyl units which could be converted into their corresponding triphenylenes by the Scholl reaction, leading to novel liquid-crystalline columnar materials. Selected tribenzo[18]crown-6 o-terphenyls could interact with emissive ternary metal cluster compound salts to generate hybrid materials combining the properties of both moieties. Due to synergistic effects and despite the anisometry of the cluster compounds, individual properties such as liquid-crystalline phase stability of the organic part and emission abilities of its inorganic counter-part are enhanced in the hybrid compounds.

5.
Angew Chem Int Ed Engl ; 57(36): 11692-11696, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29989341

RESUMO

Replacing pure inorganic materials by functional organic-inorganic hybrid ones to lower production costs has become a major challenge, in particular for the optoelectronic industry. Adding nanostructuration abilities meanwhile preserving homogeneity is even more challenging for this class of new materials. Here we show that red-NIR emissive ternary molybdenum cluster salts can be assembled to liquid crystalline 15C5 crown ethers. The resulting hybrids are homogeneous and stable up to high temperature despite the weakness of the supramolecular interactions binding both components. These are illustrated by 133 Cs MAS NMR. All hybrids show hexagonal columnar arrangements and strong red-NIR emission. Surprisingly, when chlorinated clusters are used instead of brominated ones, the mesophase stability is largely enhanced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...