Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38491334

RESUMO

PURPOSE: This study focused on identifying a hereditary predisposition in women previously diagnosed with early-onset breast cancer through a retrospective outreach activity (Traceback). The objectives were to evaluate the possible clinical implementation of a simplified Traceback strategy and to identify carriers of pathogenic variants among previously untested women. METHODS: Three hundred and fifteen Traceback-eligible women diagnosed with breast cancer at 36-40 years in Southern Sweden between 2000 and 2019 were identified and offered an analysis of the genes ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, and RAD51D through a standardized letter. Women who chose to participate were asked about their experiences through a questionnaire. The workload for the study personnel was measured and recorded. RESULTS: One hundred and seventy-six women underwent genetic testing and pathogenic variants were identified in 9.7%: ATM (n = 6), BARD1 (n = 1), BRCA1 (n = 3), CHEK2 (n = 5), and PALB2 (n = 2). Women with normal test results were informed through a standardized letter. Carriers of pathogenic variants were contacted by telephone and offered in-person genetic counseling. One hundred and thirty-four women returned the subsequent questionnaire. Most study participants were satisfied with both written pre- and post-test information and many expressed their gratitude. The extra workload as compared to routine clinical genetic counseling was modest (8 min per patient). CONCLUSION: The insights from the participants' perspectives and sentiments throughout the process support the notion that the Traceback procedure is a safe and an appreciated complement to routine genetic counseling. The genetic yield of almost 10% also suggests that the associated extra workload for genetic counselors could be viewed as acceptable in clinical implementation scenarios.

2.
J Clin Oncol ; : JCO2301647, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471049

RESUMO

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.The European Stop Kinase Inhibitors (EURO-SKI) study is the largest clinical trial for investigating the cessation of tyrosine kinase inhibitors (TKIs) in patients with chronic myeloid leukemia in stable deep molecular remission (DMR). Among 728 patients, 434 patients (61%; 95% CI, 57 to 64) remained in major molecular response (MMR) at 6 months and 309 patients of 678 (46%; 95% CI, 42 to 49) at 36 months. Duration of TKI treatment and DMR before TKI stop were confirmed as significant factors for the prediction of MMR loss at 6 months. In addition, the type of BCR::ABL1 transcript was identified as a prognostic factor. For late MMR losses after 6 months, TKI treatment duration, percentage of blasts in peripheral blood, and platelet count at diagnosis were significant factors in multivariate analysis. For the entire study period of 36 months, multiple logistic regression models confirmed duration of treatment, blasts, and transcript type as independent factors for MMR maintenance. In addition to the duration of treatment, transcript type as well as blasts in peripheral blood at diagnosis should be considered as important factors to predict treatment-free remission.

3.
J Neurol ; 271(1): 526-542, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787810

RESUMO

Hereditary ataxia is a heterogeneous group of complex neurological disorders. Next-generation sequencing methods have become a great help in clinical diagnostics, but it may remain challenging to determine if a genetic variant is the cause of the patient's disease. We compiled a consecutive single-center series of 87 patients from 76 families with progressive ataxia of known or unknown etiology. We investigated them clinically and genetically using whole exome or whole genome sequencing. Test methods were selected depending on family history, clinical phenotype, and availability. Genetic results were interpreted based on the American College of Medical Genetics criteria. For high-suspicion variants of uncertain significance, renewed bioinformatical and clinical evaluation was performed to assess the level of pathogenicity. Thirty (39.5%) of the 76 families had received a genetic diagnosis at the end of our study. We present the predominant etiologies of hereditary ataxia in a Swedish patient series. In two families, we established a clinical diagnosis, although the genetic variant was classified as "of uncertain significance" only, and in an additional three families, results are pending. We found a pathogenic variant in one family, but we suspect that it does not explain the complete clinical picture. We conclude that correctly interpreting genetic variants in complex neurogenetic diseases requires genetics and clinical expertise. The neurologist's careful phenotyping remains essential to confirm or reject a diagnosis, also by reassessing clinical findings after a candidate genetic variant is suggested. Collaboration between neurology and clinical genetics and combining clinical and research approaches optimizes diagnostic yield.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , Suécia , Ataxia/diagnóstico , Ataxia/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Fenótipo
5.
Am J Hum Genet ; 111(1): 82-95, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38035881

RESUMO

Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Ataxias Espinocerebelares/genética , Ataxia/genética , Ataxia Cerebelar/genética , Fenótipo , Degenerações Espinocerebelares/genética , Proteínas de Homeodomínio/genética
6.
Trials ; 24(1): 810, 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105176

RESUMO

BACKGROUND: The results of germline genetic testing for hereditary cancer are of importance not only to the patients under investigation but also to their genetic at-risk relatives. Standard care is to encourage the proband (first family member under investigation) to pass on this risk information to the relatives. Previous research suggests that with family-mediated disclosure, only about a third of at-risk relatives contact health care to receive genetic counselling. In some studies, complementing family-mediated risk disclosure with healthcare-assisted risk disclosure almost doubles the uptake of genetic counselling in at-risk relatives. In this study, we evaluate healthcare-assisted direct letters to relatives at risk of hereditary cancer syndromes in a randomized controlled trial. METHODS: Probands are recruited from Swedish outpatient cancer genetics clinics to this two-arm randomized controlled trial. The study recruits probands with either a pathogenic variant in a cancer susceptibility gene (BRCA1, BRCA2, PALB2, MLH1, MSH2, MSH6, PMS2) or probands with familial breast and colorectal cancer based on clinical and pedigree criteria. In both arms, probands receive standard care, i.e., are encouraged and supported to pass on information to relatives. In the intervention arm, the proband is also offered to have direct letters sent to the at-risk relatives. The primary outcome measure is the proportion of at-risk relatives contacting a Swedish cancer genetics clinic within 12 months of the proband receiving the test results. DISCUSSION: This paper describes the protocol of a randomized controlled clinical trial evaluating a healthcare-assisted approach to risk disclosure by offering the probands to send direct letters to their at-risk relatives. The results of this study should be informative in the future development of risk disclosure practices in cancer genetics clinics. TRIAL REGISTRATION: ClinicalTrials.gov. Identifier NCT04197856 (pre-trial registration on December 13, 2019). Also registered at the website "RCC Cancerstudier i Sverige" as study #86719.


Assuntos
Revelação , Neoplasias , Humanos , Suécia , Testes Genéticos/métodos , Predisposição Genética para Doença , Atenção à Saúde , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
7.
BMC Cancer ; 23(1): 738, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563628

RESUMO

BACKGROUND: Genetic screening for pathogenic variants (PVs) in cancer predisposition genes can affect treatment strategies, risk prediction and preventive measures for patients and families. For decades, hereditary breast and ovarian cancer (HBOC) has been attributed to PVs in the genes BRCA1 and BRCA2, and more recently other rare alleles have been firmly established as associated with a high or moderate increased risk of developing breast and/or ovarian cancer. Here, we assess the genetic variation and tumor characteristics in a large cohort of women with suspected HBOC in a clinical oncogenetic setting. METHODS: Women with suspected HBOC referred from all oncogenetic clinics in Sweden over a six-year inclusion period were screened for PVs in 13 clinically relevant genes. The genetic outcome was compared with tumor characteristics and other clinical data collected from national cancer registries and hospital records. RESULTS: In 4622 women with breast and/or ovarian cancer the overall diagnostic yield (the proportion of women carrying at least one PV) was 16.6%. BRCA1/2 PVs were found in 8.9% of women (BRCA1 5.95% and BRCA2 2.94%) and PVs in the other breast and ovarian cancer predisposition genes in 8.2%: ATM (1.58%), BARD1 (0.45%), BRIP1 (0.43%), CDH1 (0.11%), CHEK2 (3.46%), PALB2 (0.84%), PTEN (0.02%), RAD51C (0.54%), RAD51D (0.15%), STK11 (0) and TP53 (0.56%). Thus, inclusion of the 11 genes in addition to BRCA1/2 increased diagnostic yield by 7.7%. The yield was, as expected, significantly higher in certain subgroups such as younger patients, medullary breast cancer, higher Nottingham Histologic Grade, ER-negative breast cancer, triple-negative breast cancer and high grade serous ovarian cancer. Age and tumor subtype distributions differed substantially depending on genetic finding. CONCLUSIONS: This study contributes to understanding the clinical and genetic landscape of breast and ovarian cancer susceptibility. Extending clinical genetic screening from BRCA1 and BRCA2 to 13 established cancer predisposition genes almost doubles the diagnostic yield, which has implications for genetic counseling and clinical guidelines. The very low yield in the syndrome genes CDH1, PTEN and STK11 questions the usefulness of including these genes on routine gene panels.


Assuntos
Neoplasias da Mama , Síndrome Hereditária de Câncer de Mama e Ovário , Neoplasias Ovarianas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Proteína BRCA1/genética , Proteína BRCA2/genética , Predisposição Genética para Doença , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Testes Genéticos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/genética , Neoplasias de Mama Triplo Negativas/genética , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Mutação em Linhagem Germinativa
8.
Genome Med ; 15(1): 25, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060015

RESUMO

BACKGROUND: Pathogenic germline variants (PGVs) in certain genes are linked to higher lifetime risk of developing breast cancer and can influence preventive surgery decisions and therapy choices. Public health programs offer genetic screening based on criteria designed to assess personal risk and identify individuals more likely to carry PGVs, dividing patients into screened and non-screened groups. How tumor biology and clinicopathological characteristics differ between these groups is understudied and could guide refinement of screening criteria. METHODS: Six thousand six hundred sixty breast cancer patients diagnosed in South Sweden during 2010-2018 were included with available clinicopathological and RNA sequencing data, 900 (13.5%) of which had genes screened for PGVs through routine clinical screening programs. We compared characteristics of screened patients and tumors to non-screened patients, as well as between screened patients with (n = 124) and without (n = 776) PGVs. RESULTS: Broadly, breast tumors in screened patients showed features of a more aggressive disease. However, few differences related to tumor biology or patient outcome remained significant after stratification by clinical subgroups or PAM50 subtypes. Triple-negative breast cancer (TNBC), the subgroup most enriched for PGVs, showed the most differences between screening subpopulations (e.g., higher tumor proliferation in screened cases). Significant differences in PGV prevalence were found between clinical subgroups/molecular subtypes, e.g., TNBC cases were enriched for BRCA1 PGVs. In general, clinicopathological differences between screened and non-screened patients mimicked those between patients with and without PGVs, e.g., younger age at diagnosis for positive cases. However, differences in tumor biology/microenvironment such as immune cell composition were additionally seen within PGV carriers/non-carriers in ER + /HER2 - cases, but not between screening subpopulations in this subgroup. CONCLUSIONS: Characterization of molecular tumor features in patients clinically screened and not screened for PGVs represents a relevant read-out of guideline criteria. The general lack of molecular differences between screened/non-screened patients after stratification by relevant breast cancer subsets questions the ability to improve the identification of screening candidates based on currently used patient and tumor characteristics, pointing us towards universal screening. Nevertheless, while that is not attained, molecular differences identified between PGV carriers/non-carriers suggest the possibility of further refining patient selection within certain patient subsets using RNA-seq through, e.g., gene signatures. TRIAL REGISTRATION: The Sweden Cancerome Analysis Network - Breast (SCAN-B) was prospectively registered at ClinicalTrials.gov under the identifier NCT02306096.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Testes Genéticos , Mutação em Linhagem Germinativa , Predisposição Genética para Doença , Células Germinativas , Microambiente Tumoral
9.
Camb Prism Precis Med ; 1: e15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38550923

RESUMO

Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.

10.
Commun Biol ; 5(1): 1061, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203093

RESUMO

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.


Assuntos
Neoplasias da Mama , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , RNA Mensageiro
12.
Int J Pediatr Otorhinolaryngol ; 159: 111218, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779349

RESUMO

OBJECTIVES: The aim of this study was to investigate genetic outcomes, analyze the family experience, and describe the process of implementing genetic sequencing for children with profound sensorineural hearing loss (SNHL) at a tertial audiological center in southern Sweden. DESIGN: This is a prospective pilot study including eleven children with profound bilateral SNHL who underwent cochlear implant surgery. Genetic diagnostic investigation was performed with whole exome sequencing (WES) complemented with XON-array to identify copy number variants, using a manually curated gene panel incorporating 179 genes associated with non-syndromic and syndromic SNHL. Mitochondrial DNA (mtDNA) from blood was examined separately. A patient reported experience measures (PREM) questionnaire was used to evaluate parental experience. We also describe here the process of implementing WES in an audiology department. RESULTS: Six female and five male children (mean 3.4 years, SD 3.5 years), with profound bilateral SNHL were included. Genetic variants of interest were found in six subjects (55%), where three (27%) could be classified as pathogenic or likely pathogenic. Among the six cases, one child was found to have a homozygous pathogenic variant in MYO7A and two children had homozygous likely pathogenic variants in SLC26A4 and PCDH15, respectively. One was carrying a compound heterozygote frameshift variant of uncertain significance (VUS) on one allele and in trans, a likely pathogenic deletion on the other allele in PCDH15. Two subjects had homozygous VUS in PCDH15 and ADGRV1, respectively. In five of the cases the variants were in genes associated with Usher syndrome. For one of the likely pathogenic variants, the finding was related to Pendred syndrome. No mtDNA variants related to SNHL were found. The PREM questionnaire revealed that the families had difficulty in fully understanding the results of the genetic analysis. However, the parents of all eleven (100%) subjects still recommended that other families with children with SNHL should undergo genetic testing. Specifically addressed referrals for prompt complementary clinical examination and more individualized care were possible, based on the genetic results. Close clinical collaboration between different specialists, including physicians of audiology, audiologists, clinical geneticists, ophthalmologists, pediatricians, otoneurologists, physiotherapists and hearing habilitation teams was initiated during the implementation of the new regime. For all professionals involved, a better knowledge of the diversity of the genetic background of hearing loss was achieved. CONCLUSIONS: Whole exome sequencing and XON-array using a panel of genes associated with SNHL had a high diagnostic yield, added value to the families, and provided guidance for further examinations and habilitation for the child. Great care should be taken to thoroughly inform parents about the genetic test result. Collaborations between departments were intensified and knowledge of hearing genomics was increased among the staff.


Assuntos
Implante Coclear , Perda Auditiva Neurossensorial , Criança , Feminino , Perda Auditiva Bilateral , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos
13.
Breast Cancer Res Treat ; 190(2): 307-315, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34529195

RESUMO

PURPOSE: In Sweden, a Traceback approach, i.e., a retrospective genetic outreach activity, among cancer patients is not normally used in clinical practice. In this pilot study, we wanted to evaluate a Traceback strategy for possible future clinical implementation and investigate why not all women with early-onset breast cancer underwent genetic testing when they were first diagnosed. METHODS: Out of all women (n = 409) diagnosed with breast cancer at ≤ 35 years in Southern Sweden between 2000 and 2017, 63 had not previously been tested. These women were offered an analysis of the genes BRCA1, BRCA2, PALB2, CHEK2, and ATM through a standardized letter. Subsequently, women with normal test results were informed through a letter and carriers of pathogenic variants were contacted through a telephone call and offered in-person genetic counseling. All tested women were asked to complete a follow-up questionnaire regarding previously not having attended genetic counseling and testing and their experiences of the current retrospective approach. RESULTS: Out of the invited women, 29 (46%) underwent genetic testing and 27 (43%) answered the questionnaire. Pathogenic variants were identified in BRCA1 (n = 2), CHEK2 (n = 1), and ATM (n = 1). The main reason for previously not having undergone genetic testing was not having received any information from their physicians. Most study participants were satisfied with both written pre- and post-test information. CONCLUSION: The process with retrospective identification, written pre-test information, and genetic testing, followed by in-person counseling for carriers of pathogenic variants only, was well accepted. This has implications for future Traceback implementation programs.


Assuntos
Neoplasias da Mama , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa , Humanos , Projetos Piloto , Estudos Retrospectivos
14.
Sci Rep ; 11(1): 14763, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285278

RESUMO

The risk of breast cancer associated with CHEK2:c.1100delC is 2-threefold but higher in carriers with a family history of breast cancer than without, suggesting that other genetic loci in combination with CHEK2:c.1100delC confer an increased risk in a polygenic model. Part of the excess familial risk has been associated with common low-penetrance variants. This study aimed to identify genetic loci that modify CHEK2:c.1100delC-associated breast cancer risk by searching for candidate risk alleles that are overrepresented in CHEK2:c.1100delC carriers with breast cancer compared with controls. We performed whole-exome sequencing in 28 breast cancer cases with germline CHEK2:c.1100delC, 28 familial breast cancer cases and 70 controls. Candidate alleles were selected for validation in larger cohorts. One recessive synonymous variant, rs16897117, was suggested, but no overrepresentation of homozygous CHEK2:c.1100delC carriers was found in the following validation. Furthermore, 11 non-synonymous candidate alleles were suggested for further testing, but no significant difference in allele frequency could be detected in the validation in CHEK2:c.1100delC cases compared with familial breast cancer, sporadic breast cancer and controls. With this method, we found no support for a CHEK2:c.1100delC-specific genetic modifier. Further studies of CHEK2:c.1100delC genetic modifiers are warranted to improve risk assessment in clinical practice.


Assuntos
Neoplasias da Mama/genética , Quinase do Ponto de Checagem 2/genética , Sequenciamento do Exoma/métodos , Deleção de Sequência , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Herança Multifatorial
15.
Lakartidningen ; 1182021 05 10.
Artigo em Sueco | MEDLINE | ID: mdl-33973225

RESUMO

If a disease affects fewer than 1 in 2 000, the European Union defines it as a rare disease. Globally, about 300 million people live with a rare disease, and in Sweden about 400 000. There are approximately 7 000 different rare diseases. The clinical picture varies from a single symptom to complex patterns with multiple organs affected, often combined with cognitive and motor impairment. At least 72 % of all rare diseases are genetic and 70% have childhood onset. Many patients are undiagnosed and do not receive optimal treatment. Today, only 5% of rare diseases have an approved treatment option. With modern genetic high throughput techniques, many disease-causing mutations are identified, increasing the possibility of personalized treatment and prevention strategies, designed by the individual's genetic conditions, i.e. precision medicine.


Assuntos
Medicina de Precisão , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Suécia , Sequenciamento Completo do Genoma
16.
Artigo em Inglês | MEDLINE | ID: mdl-32944097

RESUMO

BACKGROUND: Targeted surveillance of at-risk individuals in families with increased risk of hereditary cancer is an effective prevention strategy if relatives are identified, informed and enrolled in screening programs. Despite the potential benefits, many eligible at-risk relatives remain uninformed of their cancer risk. This study describes the general public's opinion on disclosure of hereditary colorectal cancer (CRC) risk information, as well as preferences on the source and the mode of information. METHODS: A random sample of the general public was assessed through a Swedish citizen web-panel. Respondents were presented with scenarios of being an at-risk relative in a family that had an estimated increased hereditary risk of CRC; either 10% (moderate) or 70% (high) lifetime risk. A colonoscopy was presented as a preventive measure. Results were analysed to identify significant differences between groups using the Pearson's chi-square (χ2) test. RESULTS: Of 1800 invited participants, 977 completed the survey (54%). In the moderate and high-risk scenarios, 89.2 and 90.6% respectively, would like to receive information about a potential hereditary risk of CRC (χ2, p = .755). The desire to be informed was higher among women (91.5%) than men (87.0%, χ2, p = .044). No significant differences were found when comparing different age groups, educational levels, place of residence and having children or not. The preferred source of risk information was a healthcare professional in both moderate and high-risk scenarios (80.1 and 75.5%). However, 18.1 and 20.1% respectively would prefer to be informed by a family member. Assuming that healthcare professionals disclosed the information, the favoured mode of information was letter and phone (38.4 and 33.2%). CONCLUSIONS: In this study a majority of respondents wanted to be informed about a potential hereditary risk of CRC and preferred healthcare professionals to communicate this information. The two presented levels of CRC lifetime risk did not significantly affect the interest in being informed. Our data offer insights into the needs and preferences of the Swedish population, providing a rationale for developing complementary healthcare-assisted communication pathways to realise the full potential of targeted prevention of hereditary CRC.

17.
Nat Commun ; 11(1): 3747, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719340

RESUMO

Homologous recombination deficiency (HRD) is a defining characteristic in BRCA-deficient breast tumors caused by genetic or epigenetic alterations in key pathway genes. We investigated the frequency of BRCA1 promoter hypermethylation in 237 triple-negative breast cancers (TNBCs) from a population-based study using reported whole genome and RNA sequencing data, complemented with analyses of genetic, epigenetic, transcriptomic and immune infiltration phenotypes. We demonstrate that BRCA1 promoter hypermethylation is twice as frequent as BRCA1 pathogenic variants in early-stage TNBC and that hypermethylated and mutated cases have similarly improved prognosis after adjuvant chemotherapy. BRCA1 hypermethylation confers an HRD, immune cell type, genome-wide DNA methylation, and transcriptional phenotype similar to TNBC tumors with BRCA1-inactivating variants, and it can be observed in matched peripheral blood of patients with tumor hypermethylation. Hypermethylation may be an early event in tumor development that progress along a common pathway with BRCA1-mutated disease, representing a promising DNA-based biomarker for early-stage TNBC.


Assuntos
Proteína BRCA1/genética , Mutação/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteína BRCA1/deficiência , Estudos de Coortes , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Regiões Promotoras Genéticas , Transcrição Gênica , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/terapia
18.
Public Health Genomics ; 23(3-4): 100-109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32640451

RESUMO

Swedish national breast cancer guidelines recommend that all women diagnosed with breast cancer (BC) at the age of 35 years or younger should be referred to their regional oncogenetic clinic for genetic counseling and testing, regardless of family history of cancer. The main objective of this study was to evaluate whether place of residence at BC diagnosis and treating hospital were associated with the fact that not all BC patients diagnosed at ≤35 years in the southern part of Sweden have attended genetic counseling and testing. Between 2000 and 2013, 279 women in the South Swedish Health Care Region were diagnosed with BC at ≤35 years. Information regarding place of residence at BC diagnosis, treating hospital, time of registration and first meeting at the Oncogenetic Clinic in Lund, and genetic testing was collected. With a follow-up period until August 2018, 64% were registered at the clinic (60% underwent genetic testing) and 36% were not. BC patients from 2 counties and from rural settings with a population of <10,000 inhabitants were significantly less likely to be registered at the clinic. Our results suggest that place of residence at BC diagnosis and treating hospital were associated with the probability of referral for genetic counseling and testing for women diagnosed with BC at ≤35 years in the South Swedish Health Care Region. We propose, as a generalizable finding, that further educational and outreach activities within the health care system and the community may be needed to ensure that all women diagnosed with early-onset BC receive proper genetic counseling.


Assuntos
Neoplasias da Mama , Aconselhamento Genético/métodos , Encaminhamento e Consulta/organização & administração , Adulto , Idade de Início , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , Testes Genéticos/métodos , Humanos , Padrões de Prática Médica , Suécia/epidemiologia
19.
J Natl Cancer Inst ; 112(12): 1242-1250, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32107557

RESUMO

BACKGROUND: The purpose of this study was to estimate precise age-specific tubo-ovarian carcinoma (TOC) and breast cancer (BC) risks for carriers of pathogenic variants in RAD51C and RAD51D. METHODS: We analyzed data from 6178 families, 125 with pathogenic variants in RAD51C, and 6690 families, 60 with pathogenic variants in RAD51D. TOC and BC relative and cumulative risks were estimated using complex segregation analysis to model the cancer inheritance patterns in families while adjusting for the mode of ascertainment of each family. All statistical tests were two-sided. RESULTS: Pathogenic variants in both RAD51C and RAD51D were associated with TOC (RAD51C: relative risk [RR] = 7.55, 95% confidence interval [CI] = 5.60 to 10.19; P = 5 × 10-40; RAD51D: RR = 7.60, 95% CI = 5.61 to 10.30; P = 5 × 10-39) and BC (RAD51C: RR = 1.99, 95% CI = 1.39 to 2.85; P = 1.55 × 10-4; RAD51D: RR = 1.83, 95% CI = 1.24 to 2.72; P = .002). For both RAD51C and RAD51D, there was a suggestion that the TOC relative risks increased with age until around age 60 years and decreased thereafter. The estimated cumulative risks of developing TOC to age 80 years were 11% (95% CI = 6% to 21%) for RAD51C and 13% (95% CI = 7% to 23%) for RAD51D pathogenic variant carriers. The estimated cumulative risks of developing BC to 80 years were 21% (95% CI = 15% to 29%) for RAD51C and 20% (95% CI = 14% to 28%) for RAD51D pathogenic variant carriers. Both TOC and BC risks for RAD51C and RAD51D pathogenic variant carriers varied by cancer family history and could be as high as 32-36% for TOC, for carriers with two first-degree relatives diagnosed with TOC, or 44-46% for BC, for carriers with two first-degree relatives diagnosed with BC. CONCLUSIONS: These estimates will facilitate the genetic counseling of RAD51C and RAD51D pathogenic variant carriers and justify the incorporation of RAD51C and RAD51D into cancer risk prediction models.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Neoplasias Ovarianas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
20.
Nat Med ; 25(10): 1526-1533, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570822

RESUMO

Whole-genome sequencing (WGS) brings comprehensive insights to cancer genome interpretation. To explore the clinical value of WGS, we sequenced 254 triple-negative breast cancers (TNBCs) for which associated treatment and outcome data were collected between 2010 and 2015 via the population-based Sweden Cancerome Analysis Network-Breast (SCAN-B) project (ClinicalTrials.gov ID:NCT02306096). Applying the HRDetect mutational-signature-based algorithm to classify tumors, 59% were predicted to have homologous-recombination-repair deficiency (HRDetect-high): 67% explained by germline/somatic mutations of BRCA1/BRCA2, BRCA1 promoter hypermethylation, RAD51C hypermethylation or biallelic loss of PALB2. A novel mechanism of BRCA1 abrogation was discovered via germline SINE-VNTR-Alu retrotransposition. HRDetect provided independent prognostic information, with HRDetect-high patients having better outcome on adjuvant chemotherapy for invasive disease-free survival (hazard ratio (HR) = 0.42; 95% confidence interval (CI) = 0.2-0.87) and distant relapse-free interval (HR = 0.31, CI = 0.13-0.76) compared to HRDetect-low, regardless of whether a genetic/epigenetic cause was identified. HRDetect-intermediate, some possessing potentially targetable biological abnormalities, had the poorest outcomes. HRDetect-low cancers also had inadequate outcomes: ~4.7% were mismatch-repair-deficient (another targetable defect, not typically sought) and they were enriched for (but not restricted to) PIK3CA/AKT1 pathway abnormalities. New treatment options need to be considered for now-discernible HRDetect-intermediate and HRDetect-low categories. This population-based study advocates for WGS of TNBC to better inform trial stratification and improve clinical decision-making.


Assuntos
Recidiva Local de Neoplasia/genética , Prognóstico , Neoplasias de Mama Triplo Negativas/genética , Sequenciamento Completo do Genoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Metilação de DNA/genética , Intervalo Livre de Doença , Feminino , Genética Populacional , Mutação em Linhagem Germinativa/genética , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia , Regiões Promotoras Genéticas , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...