Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Genes Brain Behav ; 23(2): e12894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597363

RESUMO

Opioid use disorder (OUD) is an ongoing public health concern in the United States, and relatively little work has addressed how genetic background contributes to OUD. Understanding the genetic contributions to oxycodone-induced analgesia could provide insight into the early stages of OUD development. Here, we present findings from a behavioral phenotyping protocol using several inbred strains from the Hybrid Rat Diversity Panel. Our behavioral protocol included a modified "up-down" von Frey procedure to measure inherent strain differences in the sensitivity to a mechanical stimulus on the hindpaw. We also performed the tail immersion assay, which measures the latency to display tail withdrawal in response to a hot water bath. Initial withdrawal thresholds were taken in drug-naïve animals to record baseline thermal sensitivity across the strains. Oxycodone-induced analgesia was measured after administration of oxycodone over the course of 2 h. Both mechanical and thermal sensitivity are shaped by genetic factors and display moderate heritability (h2 = 0.23-0.40). All strains displayed oxycodone-induced analgesia that peaked at 15-30 min and returned to baseline by 2 h. There were significant differences between the strains in the magnitude and duration of their analgesic response to oxycodone, although the heritability estimates were quite modest (h2 = 0.10-0.15). These data demonstrate that genetic background confers differences in mechanical sensitivity, thermal sensitivity, and oxycodone-induced analgesia.


Assuntos
Analgesia , Transtornos Relacionados ao Uso de Opioides , Ratos , Animais , Oxicodona/farmacologia , Analgésicos Opioides/farmacologia
2.
Drug Alcohol Depend ; 257: 111126, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387257

RESUMO

BACKGROUND: The understanding of the molecular genetic contributions to smoking is largely limited to the additive effects of individual single nucleotide polymorphisms (SNPs), but the underlying genetic risk is likely to also include dominance, epistatic, and gene-environment interactions. METHODS: To begin to address this complexity, we attempted to identify genetic interactions between rs16969968, the most replicated SNP associated with smoking quantity, and all SNPs and genes across the genome. RESULTS: Using the UK Biobank European subsample, we found one SNP, rs1892967, and two genes, PCNA and TMEM230, that showed a significant genome-wide interaction with rs16969968 for log10 CPD and raw CPD, respectively, in a sample of 116 442 individuals who self-reported currently or previously smoking. We extended these analyses to individuals of South Asian descent and meta-analyzed the combined sample of 117 212 individuals of European and South Asian ancestry. We replicated the gene findings in a meta-analysis of five Finnish samples (N=40 140): FinHealth, FINRISK, Finnish Twin Cohort, GeneRISK, and Health-2000-2011. CONCLUSIONS: To our knowledge, this represents the first reliable epistatic association between single nucleotide polymorphisms for smoking behaviors and provides a novel direction for possible future functional studies related to this interaction. Furthermore, this work demonstrates the feasibility of these analyses by pooling multiple datasets across various ancestries, which may be applied to other top SNPs for smoking and/or other phenotypes.


Assuntos
Doença de Parkinson , Produtos do Tabaco , Humanos , Cromossomos Humanos Par 20 , Proteínas de Membrana/genética , Fumar/genética , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença
3.
Behav Genet ; 54(1): 24-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603171

RESUMO

Extremist far-right ideologies, including scientifically inaccurate beliefs about race, are on the rise (Mierina and Koroleva 2015; Youngblood 2020); individuals perpetuating such ideologies occasionally cite genetics research, including behavioral genetics research. This highlights the need for behavioral geneticists to actively confront extremist ideology and promote anti-racism. We emphasize the need for Diversity, Equity and Inclusion (DEI) committees within behavioral genetics institutions. DEI committees can lead to: greater awareness of ways in which behavioral genetics has been misused (historically and currently) to harm minoritized communities, increased discussions on conducting ethical behavioral genetics research, and increased collaboration for conducting more diverse behavioral genetics research. We discuss the activities and goals of the student-driven DEI committee at the Institute for Behavior Genetics (IBG). At the same time, we acknowledge we have a long way to go, both as a committee and as a field. Our committee is still in its early stages; we discuss challenges to increasing DEI in the field and present future goals for both IBG and the behavioral genetics community as we explore the process of implementing DEI work.


Assuntos
Diversidade, Equidade, Inclusão , Estudantes , Humanos
4.
Neurosci Biobehav Rev ; 156: 105487, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040073

RESUMO

Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.


Assuntos
Microbioma Gastrointestinal , Microbiota , Transtornos Relacionados ao Uso de Opioides , Humanos , Microbioma Gastrointestinal/genética , Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides/genética , Encéfalo
5.
Behav Genet ; 54(1): 51-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37917228

RESUMO

South Asia, making up around 25% of the world's population, encompasses a wide range of individuals with tremendous genetic and environmental diversity. This region, which spans eight countries, is home to over 4500 anthropologically defined groups that speak numerous languages and have an array of religious beliefs and cultures, making it one of the most diverse places in the world. Much of the region's rich genetic diversity and structure is the result of a complex combination of population history, migration patterns, and endogamous practices. Despite the overwhelming size and diversity, South Asians have often been underrepresented in genetic research, making up less than 2% of the participants in genetic studies. This has led to a lack of population specific understanding of genetic disease risks. We aim to raise awareness about underlying genetic diversity in this ancestry group, call attention to the lack of representation of the group, and to highlight strategies for future studies in South Asians.


Assuntos
Povo Asiático , Pesquisa Biomédica , Diversidade Cultural , Humanos , Ásia Meridional , Povo Asiático/genética
6.
Genes Brain Behav ; 22(5): e12866, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37793903

RESUMO

This issue contains a series of articles describing the various resources, studies, results, and future directions for the collaborative study on the genetics of alcoholism (COGA). The collaborative and integrative approach initiated by this group ~30 years ago serves as an excellent example of the strength of team science. Individually, various aspects of COGA would be limited in their impact toward improved understanding of alcohol use disorder. Collectively, their wholistic approach which spans deep longitudinal phenotypic assessments in families to include the application of large-scale omics technologies and cell-culture based molecular studies has demonstrated the power of working together.


Assuntos
Alcoolismo , Humanos , Alcoolismo/genética , Pesquisa Interdisciplinar , Consumo de Bebidas Alcoólicas , Polimorfismo de Nucleotídeo Único
7.
Physiol Behav ; 271: 114343, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689380

RESUMO

Open-field activity is a commonly used measure of anxiety-related behavior in rodents. The inbred High and Low Activity strains of mice, selected for extreme differences in open-field activity, have been used as a genetic model of anxiety-related behaviors. These selected strains have been thoroughly studied through extensive behavioral testing, quantitative trait locus (QTL) mapping, whole-genome sequencing, and RNA sequencing, to uncover phenotypic and genotypic differences related to anxiety-related behavior. However, the effects of anxiolytic drugs on anxiety-related behavior in these strains have not been studied previously. This study allowed us to expand on previous findings to further characterize the anxiety-related behavior of these unique strains, using an anxiolytic drug. The goal of this study was to determine whether the treatment of adult male and female High Activity (low anxiety) and Low Activity (high anxiety) mice with diazepam, an agonist at the benzodiazepine allosteric site on the GABAA receptor and a drug commonly prescribed to treat anxiety disorders in humans, led to decreases in anxiety-like defensive behavioral responses as assessed in the open-field test (OFT) and elevated plus-maze (EPM). We tested the effects of three doses of diazepam (0, 0.5, 1.0, 3.0 mg/kg, i.p.), given 30 min before behavioral testing to one High Activity strain (H2) and two Low Activity strains (L1 and L2). There was an anxiolytic effect of diazepam observed in the High Activity strain, with more entries into the open arms of the elevated plus-maze, an effect similar to that seen in common mouse strains. However, the only anxiolytic effect of diazepam seen in the Low Activity strains was a reduction in stretch attend posture (SAP). Low Activity strains also displayed freezing behavior in both the OFT and EPM. The combination of the observed freezing behavior, that was not reduced by diazepam, and the reduction in SAP seen with diazepam, suggests a more complex phenotype that includes a component of innate fear in addition to anxiety-related risk assessment behaviors. Since fear and anxiety are distinguishable traits, and both contribute to human anxiety disorders, these results provide novel insight about interpretation of previous genetic and phenotypic differences observed between the High and Low Activity strains.

8.
Genes Brain Behav ; 22(6): e12851, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37259642

RESUMO

Anxiety disorders are common and can be debilitating, with effective treatments remaining hampered by an incomplete understanding of the underlying genetic etiology. Improvements have been made in understanding the genetic influences on mouse behavioral models of anxiety, yet it is unclear the extent to which genes identified in these experimental systems contribute to genetic variation in human anxiety phenotypes. Leveraging new and existing large-scale human genome-wide association studies, we tested whether sets of genes previously identified in mouse anxiety-like behavior studies contribute to a range of human anxiety disorders. When tested as individual genes, 13 mouse-identified genes were associated with human anxiety phenotypes, suggesting an overlap of individual genes contributing to both mouse models of anxiety-like behaviors and human anxiety traits. When genes were tested as sets, we did identify 14 significant associations between mouse gene sets and human anxiety, but the majority of gene sets showed no significant association with human anxiety phenotypes. These few significant associations indicate a need to identify and develop more translatable mouse models by identifying sets of genes that "match" between model systems and specific human phenotypes of interest. We suggest that continuing to develop improved behavioral paradigms and finer-scale experimental data, for instance from individual neuronal subtypes or cell-type-specific expression data, is likely to improve our understanding of the genetic etiology and underlying functional changes in anxiety disorders.


Assuntos
Transtornos de Ansiedade , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Animais , Transtornos de Ansiedade/genética , Ansiedade/genética , Fenótipo
9.
PLoS Genet ; 19(5): e1010693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216417

RESUMO

It remains unknown to what extent gene-gene interactions contribute to complex traits. Here, we introduce a new approach using predicted gene expression to perform exhaustive transcriptome-wide interaction studies (TWISs) for multiple traits across all pairs of genes expressed in several tissue types. Using imputed transcriptomes, we simultaneously reduce the computational challenge and improve interpretability and statistical power. We discover (in the UK Biobank) and replicate (in independent cohorts) several interaction associations, and find several hub genes with numerous interactions. We also demonstrate that TWIS can identify novel associated genes because genes with many or strong interactions have smaller single-locus model effect sizes. Finally, we develop a method to test gene set enrichment of TWIS associations (E-TWIS), finding numerous pathways and networks enriched in interaction associations. Epistasis is may be widespread, and our procedure represents a tractable framework for beginning to explore gene interactions and identify novel genomic targets.


Assuntos
Epistasia Genética , Transcriptoma , Transcriptoma/genética , Herança Multifatorial/genética , Redes Reguladoras de Genes/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos
10.
Genes Brain Behav ; 22(2): e12832, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36514243

RESUMO

High and Low Activity strains of mice were bidirectionally selected for differences in open-field activity (DeFries et al., 1978, Behavior Genetics, 8: 3-13) and subsequently inbred to use as a genetic model for studying anxiety-like behaviors (Booher et al., 2021, Genes, Brain and Behavior, 20: e12730). Hippocampal RNA-sequencing of the High and Low Activity mice identified 3901 differentially expressed protein-coding genes, with both sex-dependent and sex-independent effects. Functional enrichment analysis (PANTHER) highlighted 15 gene ontology terms, which allowed us to create a narrow list of 264 top candidate genes. Of the top candidate genes, 46 encoded four Complexes (I, II, IV and V) and two electron carriers (cytochrome c and ubiquinone) of the mitochondrial oxidative phosphorylation process. The most striking results were in the female high anxiety, Low Activity mice, where 39/46 genes relating to oxidative phosphorylation were upregulated. In addition, comparison of our top candidate genes with two previously curated High and Low Activity gene lists highlight 24 overlapping genes, where Ndufa13, which encodes the supernumerary subunit A13 of complex I, was the only gene to be included in all three lists. Mitochondrial dysfunction has recently been implicated as both a cause and effect of anxiety-related disorders and thus should be further explored as a possible novel pharmaceutical treatment for anxiety disorders.


Assuntos
Ansiedade , Encéfalo , Camundongos , Feminino , Animais , Ansiedade/genética , Hipocampo , Análise de Sequência de RNA
11.
Nicotine Tob Res ; 25(5): 1030-1038, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444815

RESUMO

INTRODUCTION: Smoking behaviors are partly heritable, yet the genetic and environmental mechanisms underlying smoking phenotypes are not fully understood. Developmental nicotine exposure (DNE) is a significant risk factor for smoking and leads to gene expression changes in mouse models; however, it is unknown whether the same genes whose expression is impacted by DNE are also those underlying smoking genetic liability. We examined whether genes whose expression in D1-type striatal medium spiny neurons due to DNE in the mouse are also associated with human smoking behaviors. METHODS: Specifically, we assessed whether human orthologs of mouse-identified genes, either individually or as a set, were genetically associated with five human smoking traits using MAGMA and S-LDSC while implementing a novel expression-based gene-SNP annotation methodology. RESULTS: We found no strong evidence that these genes sets were more strongly associated with smoking behaviors than the rest of the genome, but ten of these individual genes were significantly associated with three of the five human smoking traits examined (p < 2.5e-6). Three of these genes have not been reported previously and were discovered only when implementing the expression-based annotation. CONCLUSIONS: These results suggest the genes whose expression is impacted by DNE in mice are largely distinct from those contributing to smoking genetic liability in humans. However, examining a single mouse neuronal cell type may be too fine a resolution for comparison, suggesting that experimental manipulation of nicotine consumption, reward, or withdrawal in mice may better capture genes related to the complex genetics of human tobacco use. IMPLICATIONS: Genes whose expression is impacted by DNE in mouse D1-type striatal medium spiny neurons were not found to be, as a whole, more strongly associated with human smoking behaviors than the rest of the genome, though ten individual mouse-identified genes were associated with human smoking traits. This suggests little overlap between the genetic mechanisms impacted by DNE and those influencing heritable liability to smoking phenotypes in humans. Further research is warranted to characterize how developmental nicotine exposure paradigms in mice can be translated to understand nicotine use in humans and their heritable effects on smoking.


Assuntos
Nicotina , Fumar , Humanos , Animais , Camundongos , Fumar/genética , Fenótipo , Fumar Tabaco , Modelos Animais de Doenças
12.
Geroscience ; 45(1): 65-84, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35622271

RESUMO

Aging is characterized by declines in physiological function that increase risk of age-associated diseases and limit healthspan, mediated in part by chronic low-grade inflammation. Interleukin (IL)-37 suppresses inflammation in pathophysiological states but has not been studied in the context of aging in otherwise healthy humans. Thus, we investigated associations between IL-37 and markers of healthspan in 271 young (18-39 years; n = 41), middle-aged (40-64 years; n = 162), and older (65 + years; n = 68) adults free of overt clinical disease. After conducting a thorough validation of AdipoGen's IL-37 ELISA, we found that plasma IL-37 is lower in older adults (young: 339 ± 240, middle-aged: 345 ± 234; older: 258 ± 175 pg/mL; P = 0.048), despite elevations in pro-inflammatory markers. As such, the ratios of circulating IL-37 to pro-inflammatory markers were considerably lower in older adults (e.g., IL-37 to C-reactive protein: young, 888 ± 918 vs. older, 337 ± 293; P = 0.02), indicating impaired IL-37 responsiveness to a pro-inflammatory state with aging and consistent with the notion of immunosenescence. These ratios were related to multiple indicators of healthspan, including positively to cardiorespiratory fitness (P < 0.01) and negatively to markers of adiposity, blood pressure, and blood glucose (all P < 0.05). Lastly, we correlated single-nucleotide polymorphisms (SNPs) in the IL37 and ILR8 (the co-receptor for IL-37) genes and found that variants in IL37 SNPs tended to be associated with blood pressure and adiposity (P = 0.08-0.09) but did not explain inter-individual variability in circulating IL-37 concentrations across age (P ≥ 0.23). Overall, our findings provide novel insights into a possible role of IL-37 in biological aging in humans.


Assuntos
Envelhecimento , Polimorfismo de Nucleotídeo Único , Humanos , Idoso , Pessoa de Meia-Idade , Envelhecimento/genética , Inflamação/genética , Proteína C-Reativa , Interleucinas/genética , Interleucina-1/genética
13.
Am J Med Genet B Neuropsychiatr Genet ; 186(6): 353-366, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34569141

RESUMO

Genetic correlations suggest that the genetic relationship of alcohol use with internalizing psychopathology depends on the measure of alcohol use. Problematic alcohol use (PAU) is positively genetically correlated with internalizing psychopathology, whereas alcohol consumption ranges from not significantly correlated to moderately negatively correlated with internalizing psychopathology. To explore these different genetic relationships of internalizing psychopathology with alcohol use, we performed a multivariate genome-wide association study of four correlated factors (internalizing psychopathology, PAU, quantity of alcohol consumption, and frequency of alcohol consumption) and then assessed genome-wide and local genetic covariance between these factors. We identified 14 significant regions of local, largely positive, genetic covariance between PAU and internalizing psychopathology and 12 regions of significant local genetic covariance (including both positive and negative genetic covariance) between consumption factors and internalizing psychopathology. Partitioned genetic covariance among functional annotations suggested that brain tissues contribute significantly to positive genetic covariance between internalizing psychopathology and PAU but not to the genetic covariance between internalizing psychopathology and quantity or frequency of alcohol consumption. We hypothesize that genome-wide genetic correlations between alcohol use and psychiatric traits may not capture the more complex shared or divergent genetic architectures at the locus or tissue specific level. This study highlights the complexity of genetic architectures of alcohol use and internalizing psychopathology, and the differing shared genetics of internalizing disorders with PAU compared to consumption.


Assuntos
Alcoolismo , Estudo de Associação Genômica Ampla , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Humanos , Psicopatologia
14.
Genes Brain Behav ; 20(7): e12730, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33786989

RESUMO

High and Low Activity strains of mice (displaying low and high anxiety-like behavior, respectively) with 7.8-20 fold differences in open-field activity were selected and subsequently inbred to use as a genetic model for studying anxiety-like behavior in mice (DeFries et al., 1978, Behavior Genetics, 8:3-13). These strains exhibited differences in other anxiety-related behaviors as assessed using the light-dark box, elevated plus-maze, mirror chamber, and elevated square-maze tests (Henderson et al., 2004, Behavior Genetics, 34: 267-293). The purpose of these experiments was three-fold. First, we repeated a 6-day behavioral battery using updated equipment and software to confirm the extreme differences in anxiety-like behaviors. Second, we tested novel object exploration, a measure of anxiety-like behavior that does not rely heavily on locomotion. Third, we conducted a home cage wheel running experiment to determine whether these strains differ in locomotor activity in a familiar, home cage environment. Our behavioral test battery confirmed extreme differences in multiple measures of anxiety-like behaviors. Furthermore, the novel object test demonstrated that the High Activity mice exhibited decreased anxiety-like behaviors (increased nose pokes) compared to Low Activity mice. Finally, male Low Activity mice ran nearly twice as far each day on running wheels compared to High Activity mice, while female High and Low Activity mice did not differ in wheel running. These results support the idea that the behavioral differences between High and Low Activity mice are likely to be due to anxiety-related factors and not simply generalized differences in locomotor activity.


Assuntos
Ansiedade/genética , Comportamento Animal/fisiologia , Locomoção/fisiologia , Atividade Motora/genética , Animais , Transtornos de Ansiedade/genética , Comportamento Exploratório/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos
15.
Addiction ; 116(9): 2498-2508, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33620764

RESUMO

BACKGROUND AND AIMS: Although genome-wide association studies have identified many loci that influence smoking behaviors, much of the genetic variance remains unexplained. We characterized the genetic architecture of four smoking behaviors using single nucleotide polymorphism (SNP) heritability (h2SNP ). This is an estimate of narrow-sense heritability specifically estimating the proportion of phenotypic variation due to causal variants (CVs) tagged by SNPs. DESIGN: Partitioned h2SNP analysis of smoking behavior traits. SETTING: UK Biobank. PARTICIPANTS: UK Biobank participants of European ancestry. The number of participants varied depending on the trait, from 54 792 to 323 068. MEASUREMENTS: Smoking initiation, age of initiation, cigarettes per day (CPD; count, log-transformed, binned and dichotomized into heavy versus light) and smoking cessation with imputed genome-wide SNPs. FINDINGS: We estimated that, in aggregate, approximately 18% of the phenotypic variance in smoking initiation was captured by imputed SNPs [h2SNP = 0.18, standard error (SE) = 0.01] and 12% [SE = 0.02] for smoking cessation, both of which were more than twice the previously reported estimates. Estimated age of initiation (h2SNP  = 0.05, SE = 0.01) and binned CPD (h2SNP  = 0.1, SE = 0.01) were substantially below published twin-based h2 of 50%. CPD encoding influenced estimates, with dichotomized CPD h2SNP  = 0.28. There was no evidence of dominance genetic variance for any trait. CONCLUSION: A biobank study of smoking behavior traits suggested that the phenotypic variance explained by SNPs of smoking initiation, age of initiation, cigarettes per day and smoking cessation is modest overall.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fumar/genética
16.
Behav Genet ; 51(1): 68-81, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939625

RESUMO

We conducted whole-genome sequencing of four inbred mouse strains initially selected for high (H1, H2) or low (L1, L2) open-field activity (OFA), and then examined strain distribution patterns for all DNA variants that differed between their BALB/cJ and C57BL/6J parental strains. Next, we assessed genome-wide sharing (3,678,826 variants) both between and within the High and Low Activity strains. Results suggested that about 10% of these DNA variants may be associated with OFA, and clearly demonstrated its polygenic nature. Finally, we conducted bioinformatic analyses of functional genomics data from mouse, rat, and human to refine previously identified quantitative trait loci (QTL) for anxiety-related measures. This combination of sequence analysis and genomic-data integration facilitated refinement of previously intractable QTL findings, and identified possible genes for functional follow-up studies.


Assuntos
Ansiedade/genética , Camundongos Endogâmicos/genética , Teste de Campo Aberto/fisiologia , Animais , Transtornos de Ansiedade/genética , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Modelos Animais de Doenças , Genômica/métodos , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos BALB C/genética , Camundongos Endogâmicos C57BL/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Ratos , Sequenciamento do Exoma/métodos
17.
Nicotine Tob Res ; 23(6): 1055-1063, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33165565

RESUMO

INTRODUCTION: Tobacco smoking is the leading cause of preventable death globally. Smoking quantity, measured in cigarettes per day, is influenced both by the age of onset of regular smoking (AOS) and by genetic factors, including a strong effect of the nonsynonymous single-nucleotide polymorphism rs16969968. A previous study by Hartz et al. reported an interaction between these two factors, whereby rs16969968 risk allele carriers who started smoking earlier showed increased risk for heavy smoking compared with those who started later. This finding has yet to be replicated in a large, independent sample. METHODS: We performed a preregistered, direct replication attempt of the rs16969968 × AOS interaction on smoking quantity in 128 383 unrelated individuals from the UK Biobank, meta-analyzed across ancestry groups. We fit statistical association models mirroring the original publication as well as formal interaction tests on multiple phenotypic and analytical scales. RESULTS: We replicated the main effects of rs16969968 and AOS on cigarettes per day but failed to replicate the interaction using previous methods. Nominal significance of the rs16969968 × AOS interaction term depended strongly on the scale of analysis and the particular phenotype, as did associations stratified by early/late AOS. No interaction tests passed genome-wide correction (α = 5e-8), and all estimated interaction effect sizes were much smaller in magnitude than previous estimates. CONCLUSIONS: We failed to replicate the strong rs16969968 × AOS interaction effect previously reported. If such gene-moderator interactions influence complex traits, they likely depend on scale of measurement, and current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. IMPLICATIONS: We failed to replicate the strong rs16969968 × AOS interaction effect on smoking quantity previously reported. If such gene-moderator interactions influence complex traits, current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. Furthermore, many potential interaction effects are likely to depend on the scale of measurement employed.


Assuntos
Fumar , Idade de Início , Predisposição Genética para Doença , Humanos , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Fumar/genética , Fumar Tabaco
18.
Genes Brain Behav ; 19(3): e12632, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31912976

RESUMO

Alcohol use disorders (AUDs) lead to early death and many devastating consequences for individuals, families and society. Currently, few effective treatments are available, but emerging research suggests exercise might be beneficial in some individuals. To develop the most effective exercise treatment program, more research on intensity, type, timing, stage of addiction, drug involved, sex of subject and subject population is needed. This review highlights the complexity of the interaction between alcohol behaviors and exercise, with a focus on the role of sex and genetics. Moreover, we describe a variety of rodent models used to investigate the neuronal physiology changes that underlie alcohol consumption and exercise. Specifically, current data indicate that moderate exercise may ameliorate neuronal damage caused by alcohol consumption. Additionally, we describe studies of rodent models in the context of hedonic substitution to draw broad conclusions about shared underlying neurobiological mechanisms. Until recently, most studies in rodents were performed only in males, and few studies have utilized different genetic strains of mice or rats. Comparing similar behavioral paradigms across sex and strain, it has become clear that major sex and genetic differences exist for each behavioral context alone (alcohol consumption and exercise) and combined. Therefore, future research in this area should be developed with careful study design and attention to address both of these factors.


Assuntos
Alcoolismo/genética , Exercício Físico , Neurônios/fisiologia , Alcoolismo/fisiopatologia , Animais , Feminino , Genótipo , Humanos , Masculino , Neurônios/metabolismo , Fatores Sexuais
19.
Nicotine Tob Res ; 22(8): 1310-1315, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31930296

RESUMO

INTRODUCTION: Smoking is a leading cause of death, and genetic variation contributes to smoking behaviors. Identifying genes and sets of genes that contribute to risk for addiction is necessary to prioritize targets for functional characterization and for personalized medicine. METHODS: We performed a gene set-based association and heritable enrichment study of two addiction-related gene sets, those on the Smokescreen Genotyping Array and the nicotinic acetylcholine receptors, using the largest available GWAS summary statistics. We assessed smoking initiation, cigarettes per day, smoking cessation, and age of smoking initiation. RESULTS: Individual genes within each gene set were significantly associated with smoking behaviors. Both sets of genes were significantly associated with cigarettes per day, smoking initiation, and smoking cessation. Age of initiation was only associated with the Smokescreen gene set. Although both sets of genes were enriched for trait heritability, each accounts for only a small proportion of the single nucleotide polymorphism-based heritability (2%-12%). CONCLUSIONS: These two gene sets are associated with smoking behaviors, but collectively account for a limited amount of the genetic and phenotypic variation of these complex traits, consistent with high polygenicity. IMPLICATIONS: We evaluated evidence for the association and heritable contribution of expert-curated and bioinformatically identified sets of genes related to smoking. Although they impact smoking behaviors, these specifically targeted genes do not account for much of the heritability in smoking and will be of limited use for predictive purposes. Advanced genome-wide approaches and integration of other 'omics data will be needed to fully account for the genetic variation in smoking phenotypes.


Assuntos
Comportamento Aditivo/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Fumar/genética , Idade de Início , Comportamento Aditivo/epidemiologia , Comportamento Aditivo/psicologia , Colorado/epidemiologia , Humanos , Fenótipo , Fumar/epidemiologia , Fumar/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...