Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35531980

RESUMO

The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. To investigate what regulates endocardial identity, we employed npas4l, etv2 and scl loss-of-function models. Endocardial expression is lost in npas4l mutants, significantly reduced in etv2 mutants and only modestly affected upon scl loss-of-function. Bmp signalling was also examined: overactivation of Bmp signalling increased endocardial expression, whereas Bmp inhibition decreased expression. Finally, epistasis experiments showed that overactivation of Bmp signalling was incapable of restoring endocardial expression in etv2 mutants. By contrast, overexpression of either npas4l or etv2 was sufficient to rescue endocardial expression upon Bmp inhibition. Together, these results describe the differentiation of the endocardium, distinct from vasculature, and place npas4l and etv2 downstream of Bmp signalling in regulating its differentiation.


Assuntos
Endocárdio , Peixe-Zebra , Animais , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597309

RESUMO

The establishment of cardiac function in the developing embryo is essential to ensure blood flow and, therefore, growth and survival of the animal. The molecular mechanisms controlling normal cardiac rhythm remain to be fully elucidated. From a forward genetic screen, we identified a unique mutant, grime, that displayed a specific cardiac arrhythmia phenotype. We show that loss-of-function mutations in tmem161b are responsible for the phenotype, identifying Tmem161b as a regulator of cardiac rhythm in zebrafish. To examine the evolutionary conservation of this function, we generated knockout mice for Tmem161b. Tmem161b knockout mice are neonatal lethal and cardiomyocytes exhibit arrhythmic calcium oscillations. Mechanistically, we find that Tmem161b is expressed at the cell membrane of excitable cells and live imaging shows it is required for action potential repolarization in the developing heart. Electrophysiology on isolated cardiomyocytes demonstrates that Tmem161b is essential to inhibit Ca2+ and K+ currents in cardiomyocytes. Importantly, Tmem161b haploinsufficiency leads to cardiac rhythm phenotypes, implicating it as a candidate gene in heritable cardiac arrhythmia. Overall, these data describe Tmem161b as a highly conserved regulator of cardiac rhythm that functions to modulate ion channel activity in zebrafish and mice.


Assuntos
Arritmias Cardíacas/genética , Frequência Cardíaca/genética , Proteínas de Membrana/fisiologia , Mutação , Miócitos Cardíacos/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Potenciais de Ação/genética , Animais , Animais Geneticamente Modificados , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Sequência de Bases , Cálcio/metabolismo , Sequência Conservada , Modelos Animais de Doenças , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Coração/embriologia , Coração/fisiopatologia , Transporte de Íons , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Organogênese/genética , Periodicidade , Potássio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Zebrafish ; 16(5): 451-459, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31188070

RESUMO

Since the use of the zebrafish Danio rerio genetic model organism within the scientific research community continues to grow rapidly, continued procedural refinement to support high-quality, reproducible research and improve animal welfare remains an important focus. As such, anesthesia remains one of the most frequent procedures conducted. Here, we compared the effectiveness of clove oil (active ingredient eugenol) and AQUI-S (active ingredient iso-eugenol) with the currently most commonly used tricaine/MS-222 (ethyl 3-aminobenzoate methanesulfonate) and benzocaine anesthesia. We focused on embryos (1 day postfertilization), larvae (5 days postfertilization), and adults (9-11 months) and for the first time used exposure times that are the most relevant in research settings by using zebrafish as a genetic model system. For each age, tricaine and benzocaine achieved the most reproducible, robust anesthesia with the quickest induction and recovery. For some experimental procedures, specific clove oil concentrations in embryos and larvae may represent suitable alternatives. Although different aquatic species at specific ages respond differentially to these agents, the systematic study of comparable effective dosages for procedures most commonly employed represent an important step toward refinement.


Assuntos
Anestesia/veterinária , Anestésicos/farmacologia , Óleo de Cravo/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Eugenol/farmacologia , Peixe-Zebra/embriologia , Anestésicos/administração & dosagem , Animais , Larva/efeitos dos fármacos
4.
Science ; 353(6295): aad9969, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27198673

RESUMO

Skeletal muscle is an example of a tissue that deploys a self-renewing stem cell, the satellite cell, to effect regeneration. Recent in vitro studies have highlighted a role for asymmetric divisions in renewing rare "immortal" stem cells and generating a clonal population of differentiation-competent myoblasts. However, this model currently lacks in vivo validation. We define a zebrafish muscle stem cell population analogous to the mammalian satellite cell and image the entire process of muscle regeneration from injury to fiber replacement in vivo. This analysis reveals complex interactions between satellite cells and both injured and uninjured fibers and provides in vivo evidence for the asymmetric division of satellite cells driving both self-renewal and regeneration via a clonally restricted progenitor pool.


Assuntos
Divisão Celular/fisiologia , Rastreamento de Células/métodos , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Animais Geneticamente Modificados , Divisão Celular/genética , Células Clonais , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Músculo Esquelético/lesões , Mutação , Fator Regulador Miogênico 5/genética , Miogenina/genética , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia , Transgenes , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...