Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6698): 912-919, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781394

RESUMO

Transitioning from polycrystalline to single-crystalline nickel-rich cathodes has garnered considerable attention in both academia and industry, driven by advantages of high tap density and enhanced mechanical properties. However, cathodes with high nickel content (>70%) suffer from substantial capacity degradation, which poses a challenge to their commercial viability. Leveraging multiscale spatial resolution diffraction and imaging techniques, we observe that lattice rotations occur universally in single-crystalline cathodes and play a pivotal role in the structure degradation. These lattice rotations prove unrecoverable and govern the accumulation of adverse lattice distortions over repeated cycles, contributing to structural and mechanical degradation and fast capacity fade. These findings bridge the previous knowledge gap that exists in the mechanistic link between fast performance failure and atomic-scale structure degradation.

2.
Adv Mater ; : e2401048, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760981

RESUMO

The emergence of layered sodium transition metal oxides featuring a multiphase structure presents a promising approach for cathode materials in sodium-ion batteries (SIBs), showcasing notably improved energy storage capacity. However, the advancement of cathodes with multiphase structures faces obstacles due to the limited understanding of the integrated structural effects. Herein, we comprehend the integrated structural effects by an in-depth structure-chemistry analysis in the developed layered cathode system NaxCu0.1Co0.1Ni0.25Mn0.4Ti0.15O2 with purposely designed P2/O3 phase integration. Our results affirmed that integrated phase ratio plays a pivotal role in electrochemical/structural stability, particularly at high voltage and with the incorporation of anionic redox. In contrast to previous reports advocating solely for the enhanced electrochemical performance in biphasic structures, we demonstrated an inappropriate composite structure is more destructive than a single-phase design. The in situ X-ray diffraction (XRD) results, coupled with density functional theory (DFT) computations further confirm the biphasic structure with P2:O3 = 4:6 shows suppressed irreversible phase transition at high desodiated states and thus exhibits optimized electrochemical performance. These fundamental discoveries provide clues to the design of high-performance layered oxide cathodes for next-generation SIBs. This article is protected by copyright. All rights reserved.

3.
J Phys Chem C Nanomater Interfaces ; 128(11): 4470-4482, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38533242

RESUMO

Tailoring nanoscale catalysts to targeted applications is a vital component in reducing the carbon footprint of industrial processes; however, understanding and controlling the nanostructure influence on catalysts is challenging. Molybdenum disulfide (MoS2), a transition metal dichalcogenide (TMD) material, is a popular example of a nonplatinum-group-metal catalyst with tunable nanoscale properties. Doping with transition metal atoms, such as cobalt, is one method of enhancing its catalytic properties. However, the location and influence of dopant atoms on catalyst behavior are poorly understood. To investigate this knowledge gap, we studied the influence of Co dopants in MoS2 nanosheets on catalytic hydrodesulfurization (HDS) through a well-controlled, ligand-directed, tunable colloidal doping approach. X-ray absorption spectroscopy and density functional theory calculations revealed the nonmonotonous relationship between dopant concentration, location, and activity in HDS. Catalyst activity peaked at 21% Co:Mo as Co saturates the edge sites and begins basal plane doping. While Co prefers to dope the edges over basal sites, basal Co atoms are demonstrably more catalytically active than edge Co. These findings provide insight into the hydrogenolysis behavior of doped TMDs and can be extended to other TMD materials.

4.
J Hazard Mater ; 466: 133632, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309164

RESUMO

Due to the capacity to offer abundant catalytic sites within porous solids featuring high surface areas, metal-organic frameworks (MOFs) and their derivatives have garnered considerable attention as prospective catalysts in environmental catalysis. To promote the industrial application of MOFs, there is an urgent need for an effective and environmental-friendly preparation approach. Breaking through the limitation of the traditional two-step preparation method that Pd was introduced to the already prepared Ce-BTC (Pd/Ce-BTC, BTC = 1, 3, 5 benzenetricarboxylate), in this work, we present a novel one-pot solvothermal method for synthesizing the Pd material supported by Ce-BTC (Pd@Ce-BTC). After pyrolysis in N2 flow or air flow, Pd-CeO2 catalysts derived from Pd@Ce-BTC exhibited much higher CO oxidation activity than those from Pd/Ce-BTC. Moreover, Pd/Ce-BTC and Pd@Ce-BTC pyrolyzed in N2 flow (Pd/Ce-BTC-N and Pd@Ce-BTC-N) could better catalyze the oxidation of CO than Pd/Ce-BTC and Pd@Ce-BTC pyrolyzed in air flow (Pd/Ce-BTC-A and Pd@Ce-BTC-A). Further characterizations revealed that the abundant surface Ce3+ species, rich surface adsorbed oxygen species and superior redox properties were the main reasons for the superior CO oxidation activity of Pd@Ce-BTC-N.

5.
Adv Mater ; 36(21): e2312027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252915

RESUMO

Calcination is a solid-state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high-performance cathode materials. Here, correlative in situ X-ray absorption/scattering spectroscopy is used to investigate the calcination of nickel-based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data-driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low-temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally-ordered layered phase upon full lithiation but remains small in size. Subsequent high-temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination.

6.
Nat Commun ; 15(1): 430, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199989

RESUMO

Lithium-ion batteries play a crucial role in decarbonizing transportation and power grids, but their reliance on high-cost, earth-scarce cobalt in the commonly employed high-energy layered Li(NiMnCo)O2 cathodes raises supply-chain and sustainability concerns. Despite numerous attempts to address this challenge, eliminating Co from Li(NiMnCo)O2 remains elusive, as doing so detrimentally affects its layering and cycling stability. Here, we report on the rational stoichiometry control in synthesizing Li-deficient composite-structured LiNi0.95Mn0.05O2, comprising intergrown layered and rocksalt phases, which outperforms traditional layered counterparts. Through multiscale-correlated experimental characterization and computational modeling on the calcination process, we unveil the role of Li-deficiency in suppressing the rocksalt-to-layered phase transformation and crystal growth, leading to small-sized composites with the desired low anisotropic lattice expansion/contraction during charging and discharging. As a consequence, Li-deficient LiNi0.95Mn0.05O2 delivers 90% first-cycle Coulombic efficiency, 90% capacity retention, and close-to-zero voltage fade for 100 deep cycles, showing its potential as a Co-free cathode for sustainable Li-ion batteries.

7.
ACS Appl Mater Interfaces ; 16(1): 454-466, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147632

RESUMO

Fine-tuning the dispersion of active metal species on widely used supports is a research hotspot in the catalysis community, which is vital for achieving a balance between the atomic utilization efficiency and the intrinsic activity of active sites. In this work, using bayerite Al(OH)3 as support directly or after precalcination at 200 or 550 °C, Pt/Al2O3 catalysts with distinct Pt dispersions from single atoms to clusters (ca. 2 nm) were prepared and evaluated for CO and NH3 removal. Richer surface hydroxyl groups on AlOx(OH)y support were proved to better facilitate the dispersion of Pt. However, Pt/Al2O3 with relatively lower Pt dispersion could exhibit better activity in CO/NH3 oxidation reactions. Further reaction mechanism study revealed that the Pt sites on Pt/Al2O3 with lower Pt dispersion could be activated to Pt0 species much easier under the CO oxidation condition, on which a higher CO adsorption capacity and more efficient O2 activation were achieved simultaneously. Compared to Pt single atoms, PtOx clusters could also better activate NH3 into -NH2 and -HNO species. The higher CO adsorption capacity and the more efficient NH3/O2 activation ability on Pt/Al2O3 with relatively lower Pt dispersion well explained its higher CO/NH3 oxidation activity. This study emphasizes the importance of avoiding a singular pursuit of single-atom catalyst synthesis and instead focusing on achieving the most effective Pt species on Al2O3 support for targeted reactions. This approach avoids unnecessary limitations and enables a more practical and efficient strategy for Pt catalyst fabrication in emission control applications.

8.
Environ Sci Technol ; 58(1): 883-894, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134887

RESUMO

Transition metal catalysts, such as copper oxide, are more attractive alternatives to noble metal catalysts for emission control due to their higher abundance, lower cost, and excellent catalytic activity. In this study, we report the preparation and application of a novel CuO/CeO2 catalyst using a hydroxyl-rich Ce(OH)x support for CO oxidation and NO reduction by CO. Compared to the catalyst prepared from a regular CeO2 support, the new CuO/CeO2 catalyst prepared from the OH-rich Ce(OH)x (CuO/CeO2-OH) showed significantly higher catalytic activity under different testing conditions. The effect of OH species in the CeO2 support on the catalytic performance and physicochemical properties of the CuO/CeO2 catalyst was characterized in detail. It is demonstrated that the abundant OH species enhanced the CuOx dispersion on CeO2, increased the CuOx-CeO2 interfaces and surface defects, promoted the oxygen activation and mobility, and boosted the NO adsorption and dissociation on CuO/CeO2-OH, thus contributing to its superior catalytic activity for both CO oxidation and NO reduction by CO. These results suggest that the OH-rich Ce(OH)x is a superior support for the preparation of highly efficient metal catalysts for different applications.


Assuntos
Elementos de Transição , Oxirredução , Oxigênio , Radical Hidroxila , Catálise
9.
Commun Chem ; 6(1): 264, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052925

RESUMO

Single-atom catalysts (SACs) are particularly sensitive to external conditions, complicating the identification of catalytically active species and active sites under in situ or operando conditions. We developed a methodology for tracing the structural evolution of SACs to nanoparticles, identifying the active species and their link to the catalytic activity for the reverse water gas shift (RWGS) reaction. The new method is illustrated by studying structure-activity relationships in two materials containing Pt SACs on ceria nanodomes, supported on either ceria or titania. These materials exhibited distinctly different activities for CO production. Multimodal operando characterization attributed the enhanced activity of the titania-supported catalysts at temperatures below 320 ˚C to the formation of unique Pt sites at the ceria-titania interface capable of forming Pt nanoparticles, the active species for the RWGS reaction. Migration of Pt nanoparticles to titania support was found to be responsible for the deactivation of titania-supported catalysts at elevated temperatures. Tracking the migration of Pt atoms provides a new opportunity to investigate the activation and deactivation of Pt SACs for the RWGS reaction.

10.
Environ Sci Technol ; 57(41): 15747-15758, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788364

RESUMO

Aiming at the development of an efficient NH3 oxidation catalyst to eliminate the harmful NH3 slip from the stationary flue gas denitrification system and diesel exhaust aftertreatment system, a facile ZrO2 doping strategy was proposed to construct Pt1/CexZr1-xO2 catalysts with a tunable Pt-CeO2 interaction strength and Pt-O-Ce coordination environment. According to the results of systematic characterizations, Pt species supported on CexZr1-xO2 were mainly in the form of single atoms when x ≥ 0.7, and the strength of the Pt-CeO2 interaction and the coordination number of Pt-O-Ce bond (CNPt-O-Ce) on Pt1/CexZr1-xO2 showed a volcanic change as a function of the ZrO2 doping amount. It was proposed that the balance between the reasonable concentration of oxygen defects and limited surface Zr-Ox species well accounted for the strongest Pt-CeO2 interaction and the highest CNPt-O-Ce on Pt/Ce0.9Zr0.1O2. It was observed that the Pt/Ce0.9Zr0.1O2 catalyst exhibited much higher NH3 oxidation activity than other Pt/CexZr1-xO2 catalysts. The mechanism study revealed that the Pt1 species with the stronger Pt-CeO2 interaction and higher CNPt-O-Ce within Pt/Ce0.9Zr0.1O2 could better activate NH3 adsorbed on Lewis acid sites to react with O2 thus resulting in superior NH3 oxidation activity. This work provides a new approach for designing highly efficient Pt/CeO2 based catalysts for low-temperature NH3 oxidation.


Assuntos
Amônia , Platina , Amônia/química , Oxirredução , Zircônio/química , Oxigênio , Catálise
11.
JACS Au ; 3(8): 2156-2165, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37654574

RESUMO

Earth-abundant metals have recently been demonstrated as cheap catalyst alternatives to scarce noble metals for polyethylene hydrogenolysis. However, high methane selectivities hinder industrial feasibility. Herein, we demonstrate that low-temperature ex-situ reduction (350 °C) of coprecipitated nickel aluminate catalysts yields a methane selectivity of <5% at moderate polymer deconstruction (25-45%). A reduction temperature up to 550 °C increases the methane selectivity nearly sevenfold. Catalyst characterization (XRD, XAS, 27Al MAS NMR, H2 TPR, XPS, and CO-IR) elucidates the complex process of Ni nanoparticle formation, and air-free XPS directly after reaction reveals tetrahedrally coordinated Ni2+ cations promote methane production. Metallic and the specific cationic Ni appear responsible for hydrogenolysis of internal and terminal C-C scissions, respectively. A structure-methane selectivity relationship is discovered to guide the design of Ni-based catalysts with low methane generation. It paves the way for discovering other structure-property relations in plastics hydrogenolysis. These catalysts are also effective for polypropylene hydrogenolysis.

12.
Environ Sci Technol ; 57(33): 12501-12512, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37563957

RESUMO

Tuning the metal-support interaction and coordination environment of single-atom catalysts can help achieve satisfactory catalytic performance for targeted reactions. Herein, via the facile control of calcination temperatures for Pt catalysts on pre-stabilized Ce0.9Zr0.1O2 (CZO) support, Pt single atoms (Pt1) with different strengths of Pt-CeO2 interaction and coordination environment were successfully constructed. With the increase in calcination temperature from 350 to 750 °C, a stronger Pt-CeO2 interaction and higher Pt-O-Ce coordination number were achieved due to the reaction between PtOx and surface Ce3+ species as well as the migration of Pt1 into the surface lattice of CZO. The Pt/CZO catalyst calcined at 750 °C (Pt/CZO-750) exhibited a surprisingly higher C3H8 oxidation activity than that calcined at 550 °C (Pt/CZO-550). Through systematic characterizations and reaction mechanism study, it was revealed that the higher concentration of surface Ce3+ species/oxygen vacancies and the stronger Pt-CeO2 interaction on Pt/CZO-750 could better facilitate the activation of oxygen to oxidize C3H8 into reactive carbonate/carboxyl species and further promote the transformation of these intermediates into gaseous CO2. The Pt/CZO-750 catalyst can be a potential candidate for the catalytic removal of hydrocarbons from vehicle exhaust.


Assuntos
Oxigênio , Propano , Catálise , Oxirredução
13.
J Am Chem Soc ; 144(51): 23405-23420, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36513373

RESUMO

Aqueous Zn/MnO2 batteries (AZMOB) with mildly acidic electrolytes hold promise as potential green grid-level energy storage solutions for clean power generation. Mechanistic understanding is critical to advance capacity retention needed by the application but is complex due to the evolution of the cathode solid phases and the presence of dissolved manganese in the electrolyte due to a dissolution-deposition redox process. This work introduces operando multiphase extended X-ray absorption fine structure (EXAFS) analysis enabling simultaneous characterization of both aqueous and solid phases involved in the Mn redox reactions. The methodology was successfully conducted in multiple electrolytes (ZnSO4, Zn(CF3SO3)2, and Zn(CH3COO)2) revealing similar manganese coordination environments but quantitative differences in distribution of Mnn+ species in the solid and solution phases. Complementary Raman spectroscopy was utilized to identify the less crystalline Mn-containing products formed under charge at the cathodes. This was further augmented by transmission electron microscopy (TEM) to reveal the morphology and surface condition of the deposited solids. The results demonstrate an effective approach for bulk-level characterization of poorly crystalline multiphase solids while simultaneously gaining insight into the dissolved transition-metal species in solution. This work provides demonstration of a useful approach toward gaining insight into complex electrochemical mechanisms where both solid state and dissolved active materials are important contributors to redox activity.

14.
Nat Commun ; 13(1): 7070, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400791

RESUMO

Constructing single atom catalysts with fine-tuned coordination environments can be a promising strategy to achieve satisfactory catalytic performance. Herein, via a simple calcination temperature-control strategy, CeO2 supported Pt single atom catalysts with precisely controlled coordination environments are successfully fabricated. The joint experimental and theoretical analysis reveals that the Pt single atoms on Pt1/CeO2 prepared at 550 °C (Pt/CeO2-550) are mainly located at the edge sites of CeO2 with a Pt-O coordination number of ca. 5, while those prepared at 800 °C (Pt/CeO2-800) are predominantly located at distorted Ce substitution sites on CeO2 terrace with a Pt-O coordination number of ca. 4. Pt/CeO2-550 and Pt/CeO2-800 with different Pt1-CeO2 coordination environments exhibit a reversal of activity trend in CO oxidation and NH3 oxidation due to their different privileges in reactants activation and H2O desorption, suggesting that the catalytic performance of Pt single atom catalysts in different target reactions can be maximized by optimizing their local coordination structures.

15.
J Am Chem Soc ; 144(46): 21255-21266, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36322840

RESUMO

The local coordination structure of metal sites essentially determines the performance of supported metal catalysts. Using a surface defect enrichment strategy, we successfully fabricated Pt atomic single-layer (PtASL) structures with 100% metal dispersion and precisely controlled local coordination environment (embedded vs adsorbed) derived from Pt single-atoms (Pt1) on ceria-alumina supports. The local coordination environment of Pt1 not only governs its catalytic activity but also determines the Pt1 structure evolution upon reduction activation. For CO oxidation, the highest turnover frequency can be achieved on the embedded PtASL in the CeO2 lattice, which is 3.5 times of that on the adsorbed PtASL on the CeO2 surface and 10-70 times of that on Pt1. The favorable CO adsorption on embedded PtASL and improved activation/reactivity of lattice oxygen within CeO2 effectively facilitate the CO oxidation. This work provides new insights for the precise control of the local coordination structure of active metal sites for achieving 100% atomic utilization efficiency and optimal intrinsic catalytic activity for targeted reactions simultaneously.

16.
Nature ; 610(7930): 67-73, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131017

RESUMO

The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have made the elimination of Co a pressing need for the automotive industry1. Owing to their high energy density and low-cost advantages, high-Ni and low-Co or Co-free (zero-Co) layered cathodes have become the most promising cathodes for next-generation lithium-ion batteries2,3. However, current high-Ni cathode materials, without exception, suffer severely from their intrinsic thermal and chemo-mechanical instabilities and insufficient cycle life. Here, by using a new compositionally complex (high-entropy) doping strategy, we successfully fabricate a high-Ni, zero-Co layered cathode that has extremely high thermal and cycling stability. Combining X-ray diffraction, transmission electron microscopy and nanotomography, we find that the cathode exhibits nearly zero volumetric change over a wide electrochemical window, resulting in greatly reduced lattice defects and local strain-induced cracks. In-situ heating experiments reveal that the thermal stability of the new cathode is significantly improved, reaching the level of the ultra-stable NMC-532. Owing to the considerably increased thermal stability and the zero volumetric change, it exhibits greatly improved capacity retention. This work, by resolving the long-standing safety and stability concerns for high-Ni, zero-Co cathode materials, offers a commercially viable cathode for safe, long-life lithium-ion batteries and a universal strategy for suppressing strain and phase transformation in intercalation electrodes.

17.
Nat Commun ; 13(1): 5186, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057603

RESUMO

Ruthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2 activation occurs heterolytically, leading to a hydride on Ru, an H+ on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2 and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance.

18.
Inorg Chem ; 60(22): 17201-17211, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34735136

RESUMO

A polycrystalline iridate Li8IrO6 material was prepared via heating Li2O and IrO2 starting materials in a sealed quartz tube at 650 °C for 48 h. The structure was determined from Rietveld refinement of room-temperature powder neutron diffraction data. Li8IrO6 adopts the nonpolar space group R3̅ with Li atoms occupying the tetrahedral and octahedral sites, which is supported by the electron diffraction and solid-state 7Li NMR. This results in a crystal structure consisting of LiO4 tetrahedral layers alternating with mixed IrO6 and LiO6 octahedral layers along the crystallographic c-axis. The +4 oxidation state of Ir4+ was confirmed by near-edge X-ray absorption spectroscopy. An in situ synchrotron X-ray diffraction study of Li8IrO6 indicates that the sample is stable up to 1000 °C and exhibits no structural transitions. Magnetic measurements suggest long-range antiferromagnetic ordering with a Néel temperature (TN) of 4 K, which is corroborated by heat capacity measurements. The localized effective moment µeff (Ir) = 1.73 µB and insulating character indicate that Li8IrO6 is a correlated insulator. First-principles calculations support the nonpolar crystal structure and reveal the insulating behavior both in paramagnetic and antiferromagnetic states.

19.
Environ Sci Technol ; 55(18): 12607-12618, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34495644

RESUMO

Engineering surface defects on metal oxide supports could help promote the dispersion of active sites and catalytic performance of supported catalysts. Herein, a strategy of ZrO2 doping was proposed to create rich surface defects on CeO2 (CZO) and, with these defects, to improve Pt dispersion and enhance its affinity as single sites to the CZO support (Pt/CZO). The strongly anchored Pt single sites on CZO support were initially not efficient for catalytic oxidation of CO/C3H6. However, after a simple activation by H2 reduction, the catalytic oxidation performance over Pt/CZO catalyst was significantly boosted and better than Pt/CeO2. Pt/CZO catalyst also exhibited much higher thermal stability. The structural evolution of Pt active sites by H2 treatment was systematically investigated on aged Pt/CZO and Pt/CeO2 catalysts. With H2 reduction, ionic Pt single sites were transformed into active Pt clusters. Much smaller Pt clusters were created on CZO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm) due to stronger Pt-CeO2 interaction on aged Pt/CZO. Consequently, more exposed active Pt sites were obtained on the smaller clusters surrounded by more oxygen defects and Ce3+ species, which directly translated to the higher catalytic oxidation performance of activated Pt/CZO catalyst in vehicle emission control applications.


Assuntos
Óxidos , Emissões de Veículos , Catálise , Oxirredução , Oxigênio
20.
Environ Sci Technol ; 55(11): 7624-7633, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33871985

RESUMO

Precious metal catalysts with superior low-temperature activity and excellent thermal stability are highly needed in environmental catalysis field. In this work, a novel two-step incipient wetness impregnation (T-IWI) method was developed for the fabrication of a unique and highly stable CeO2/Al2O3 support (CA-T). Pd anchored on CA-T exhibited a much higher low-temperature catalytic activity and superior thermal stability in carbon monoxide (CO) and hydrocarbon (HC) oxidations, compared to Pd anchored on conventional CeO2/Al2O3 (CA), which was prepared by a one-step IWI method. After aging treatment at 800 °C, the CO oxidation rate on Pd/CA-T (1.69 mmol/(gPd s)) at 120 °C was 4.1 and 84.5 times of those on Pd/CA (0.41 mmol/(gPd s)) and Pd/Al2O3 (0.02 mmol/(gPd s)), respectively. It was revealed that the CA-T support with well-controlled small CeO2 particles (ca. 12 nm) possessed abundant defects for Pd anchoring, which created rich Pd-CeO2 interfaces with strengthened interaction between Pd and CeO2 where oxygen could be efficiently activated. This resulted in the significantly improved oxidation activity and thermal stability of Pd/CA-T catalysts. The T-IWI method developed herein can be applied as a universal approach to prepare highly stable metal oxide-alumina-based supports, which have broad application in environmental catalyst design, especially for automobile exhaust aftertreatment.


Assuntos
Óxido de Alumínio , Paládio , Monóxido de Carbono , Catálise , Hidrocarbonetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...