Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(9): 2816-2824, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36752342

RESUMO

The nature of metal in the isomorphous flexible metal-organic frameworks is often reported to influence flexibility and responsivity. A prominent example of such behaviour is the DUT-8(M) family ([M2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane), where the isostructural compounds with Ni, Zn, Co, and Cu in the paddle wheel cluster are known. The macro-sized crystals of Ni, Co, and Zn based compounds transform to the closed pore (cp) phase under desolvation and show typical gate opening behaviour upon adsorption. The choice of metal, in this case, allows the adjustment of switching kinetics, selectivity in adsorption, and gate-opening pressures. The submicron-sized crystals of of Ni, Co, and Zn based compounds remain in the open pore (op) phase after desolvation. In this contribution, we demonstrate that the presence of Cu in the paddle wheel leads to fundamentally different flexible behaviour. The DUT-8(Cu) desolvation does not lead to the formation of the cp phase, independent of the particle size regime. However, according to in situ powder diffraction analysis, the desolvated, macro-sized crystals of DUT-8(Cu)_op show breathing upon adsorption of CO2 at 195 K. The submicron-sized particles show rigid, nonresponsive behaviour.

2.
Adv Mater ; 35(8): e2207741, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36349824

RESUMO

Switchable metal-organic frameworks (MOFs) change their structure in time and selectively open their pores adsorbing guest molecules, leading to highly selective separation, pressure amplification, sensing, and actuation applications. The 3D engineering of MOFs has reached a high level of maturity, but spatiotemporal evolution opens a new perspective toward engineering materials in the 4th dimension (time) by t-axis design, in essence exploiting the deliberate tuning of activation barriers. This work demonstrates the first example in which an explicit temporal engineering of a switchable MOF (DUT-8, [M1 M2 (2,6-ndc)2 dabco]n , 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4diazabicyclo[2.2.2]octane, M1  = Ni, M2  = Co) is presented. The temporal response is deliberately tuned by variations in cobalt content. A spectrum of advanced analytical methods is presented for analyzing the switching kinetics stimulated by vapor adsorption using in situ time-resolved techniques ranging from ensemble adsorption and advanced synchrotron X-ray diffraction experiments to individual crystal analysis. A novel analysis technique based on microscopic observation of individual crystals in a microfluidic channel reveals the lowest limit for adsorption switching reported so far. Differences in the spatiotemporal response of crystal ensembles originate from an induction time that varies statistically and widens characteristically with increasing cobalt content reflecting increasing activation barriers.

3.
ChemSusChem ; 15(22): e202201320, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36169208

RESUMO

In the market for next-generation energy storage, lithium-sulfur (Li-S) technology is one of the most promising candidates due to its high theoretical specific energy and cost-efficient ubiquitous active materials. In this study, this cell system was combined with a cost-efficient sustainable solvent-free electrode dry-coating process (DRYtraec®). So far, this process has been only feasible with polytetrafluoroethylene (PTFE)-based binders. To increase the sustainability of electrode processing and to decrease the undesired fluorine content of Li-S batteries, a renewable, biodegradable, and fluorine-free polypeptide was employed as a binder for solvent-free electrode manufacturing. The yielded sulfur/carbon dry-film cathodes were electrochemically evaluated under lean electrolyte conditions at coin and pouch cell level, using the state-of-the-art 1,2-dimethoxyethane/1,3-dioxolane electrolyte (DME/DOL) as well as the sparingly polysulfide-solvating electrolytes hexylmethylether (HME)/DOL and tetramethylene sulfone/1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TMS/TTE). These results demonstrated that the PTFE binder can be replaced by the biodegradable sericin as the cycle stability and performance of the cathodes was retained.


Assuntos
Lítio , Enxofre , Lítio/química , Solventes , Eletrodos , Enxofre/química , Eletrólitos/química , Politetrafluoretileno
4.
Chemistry ; 28(55): e202201281, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35802315

RESUMO

DUT-8(Ni) metal-organic framework (MOF) belongs to the family of flexible pillared layer materials. The desolvated framework can be obtained in the open pore form (op) or in the closed pore form (cp), depending on the crystal size regime. In the present work, we report on the behaviour of desolvated DUT-8(Ni) at elevated temperatures. For both, op and cp variants, heating causes a structural transition, leading to a new, crystalline compound, containing two interpenetrated networks. The state of the framework before transition (op vs. cp) influences the transition temperature: the small particles of the op phase transform at significantly lower temperature in comparison to the macroparticles of the cp phase, transforming close to the decomposition temperature. The new compound, confined closed pore phase (ccp), was characterized by powder X-ray diffraction and spectroscopic techniques, such as IR, EXAFS, and positron annihilation lifetime spectroscopy (PALS). Thermal effects of structural transitions were studied using differential scanning calorimetry (DSC), showing an overall exothermic effect of the process, involving bond breaking and reformation. Theoretical calculations reveal the energetics, driving the observed temperature induced phase transition.

5.
Solid State Nucl Magn Reson ; 120: 101809, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753266

RESUMO

Within the present contribution, we describe solid-state NMR spectroscopic studies of the paddle wheel unit in the prototypic flexible MOF compound DUT-8(M) (M = Ni, Co, Zn). The 13C NMR chemical shift of these carboxylates shows a remarkable behavior. The pure 2,6-H2ndc linker carboxylates as well as DUT-8(Zn) exhibit a13C chemical shift of only about 170 ppm. In contrast, much higher values are observed for DUT-8(Ni) and especially DUT-8(Co). In the open pore state, the shift strongly depends on the solvent polarity in these two latter cases. The present contribution elucidates the reason for this solvent influence. It is concluded that the solvent mainly modifies the isotropic Fermi contact coupling constant for the excited high-spin states in DUT-8(Ni) and DUT-8(Co).


Assuntos
Estruturas Metalorgânicas , Espectroscopia de Ressonância Magnética/métodos , Metais , Modelos Moleculares , Solventes
6.
Nat Commun ; 13(1): 1951, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414051

RESUMO

Although light is a prominent stimulus for smart materials, the application of photoswitches as light-responsive triggers for phase transitions of porous materials remains poorly explored. Here we incorporate an azobenzene photoswitch in the backbone of a metal-organic framework producing light-induced structural contraction of the porous network in parallel to gas adsorption. Light-stimulation enables non-invasive spatiotemporal control over the mechanical properties of the framework, which ultimately leads to pore contraction and subsequent guest release via negative gas adsorption. The complex mechanism of light-gated breathing is established by a series of in situ diffraction and spectroscopic experiments, supported by quantum mechanical and molecular dynamic simulations. Unexpectedly, this study identifies a novel light-induced deformation mechanism of constrained azobenzene photoswitches relevant to the future design of light-responsive materials.

7.
Sci Adv ; 8(15): eabn7035, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417239

RESUMO

Flexible metal-organic frameworks that show reversible guest-induced phase transitions between closed and open pore phases have enormous potential for highly selective, energy-efficient gas separations. Here, we present the gate-opening process of DUT-8(Ni) that selectively responds to D2, whereas no response is observed for H2 and HD. In situ neutron diffraction directly reveals this pressure-dependent phase transition. Low-temperature thermal desorption spectroscopy measurements indicate an outstanding D2-over-H2 selectivity of 11.6 at 23.3 K, with high D2 uptake. First-principles calculations coupled with statistical thermodynamics predict the isotope-selective gate opening, rationalized by pronounced nuclear quantum effects. Simulations suggest DUT-8(Ni) to remain closed in the presence of HT, while it also opens for DT and T2, demonstrating gate opening as a highly effective approach for isotopolog separation.

8.
Angew Chem Int Ed Engl ; 60(40): 21778-21783, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34273230

RESUMO

We present a toolbox for the rapid characterisation of powdered samples of paramagnetic metal-organic frameworks at natural abundance by 1 H-detected solid-state NMR. Very fast MAS rates at room and cryogenic temperatures and a set of tailored radiofrequency irradiation schemes help overcome the sensitivity and resolution limits often associated with the characterisation of MOF materials. We demonstrate the approach on DUT-8(Ni), a framework containing Ni2+ paddle-wheel units which can exist in two markedly different architectures. Resolved 1 H and 13 C resonances of organic linkers are detected and assigned in few hours with only 1-2 mg of sample at natural isotopic abundance, and used to rapidly extract information on structure and local internal dynamics of the assemblies, as well as to elucidate the metal electronic properties over an extended temperature range. The experiments disclose new possibilities for describing local and global structural changes and correlating them to electronic and magnetic properties of the assemblies.

9.
Front Chem ; 9: 674566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055743

RESUMO

Variation of the crystallite size in flexible porous coordination polymers can significantly influence or even drastically change the flexibility characteristics. The impact of crystal morphology, however, on the dynamic properties of flexible metal-organic frameworks (MOFs) is poorly investigated so far. In the present work, we systematically modulated the particle size of a model gate pressure MOF (DUT-8(Ni), Ni2(2,6-ndc)2(dabco), 2,6-ndc-2,6-naphthalenedicarboxylate, dabco-1,4-diazabicyclo[2.2.2]octane) and investigated the influence of the aspect ratio, length, and width of anisotropically shaped crystals on the gate opening characteristics. DUT-8 is a member of the pillared-layer MOF family, showing reversible structural transition, i.e., upon nitrogen physisorption at 77 K. The framework crystalizes as rod-like shaped crystals in conventional synthesis. To understand which particular crystal surfaces dominate the phenomena observed, crystals similar in size and differing in morphology were involved in a systematic study. The analysis of the data shows that the width of the rods (corresponding to the crystallographic directions along the layer) represents a critical parameter governing the dynamic properties upon adsorption of nitrogen at 77 K. This observation is related to the anisotropy of the channel-like pore system and the nucleation mechanism of the solid-solid phase transition triggered by gas adsorption.

10.
Chem Mater ; 32(11): 4641-4650, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32550744

RESUMO

The origin of crystal-size-dependent adsorption behavior of flexible metal-organic frameworks is increasingly studied. In this contribution, we probe the solid-fluid interactions of DUT-49 crystals of different size by in situ 129Xe NMR spectroscopy at 200 K. With decreasing size of the crystals, the average solid-fluid interactions are found to decrease reflected by a decrease in chemical shift of adsorbed xenon from 230 to 200 ppm, explaining the lack of adsorption-induced transitions for smaller crystals. However, recent studies propose that these results can also originate from the presence of lattice defects. To investigate the influence of defects on the adsorption behavior of DUT-49, we synthesized a series of samples with tailored defect concentrations and characterized them by in situ 129Xe NMR. In comparison to the results obtained for crystals with different size, we find pronounced changes of the adsorption behavior and influence of the chemical shift only for very high concentrations of defects, which further emphasizes the important role of particle size phenomena.

11.
Chem Commun (Camb) ; 56(59): 8269-8272, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32568349

RESUMO

Experimental in situ observations of phase coexistence in switchable metal-organic frameworks are reported to provide a fundamental understanding of dynamic adsorbents that can change their pore structure in response to external stimuli. A prototypical flexible pillared layer framework DUT-8(Ni) (DUT = Dresden University of Technology) was studied under hydrostatic pressure by in situ Raman spectroscopy on single crystals. The closing transition of the open pore phase (op) containing DMF in the pores in silicon oil as a pressure transmitting fluid, as well as the closed pore phase (cp) to op transition under pressure in methanol, were studied. Phase coexistences during both transitions were observed.

12.
ChemSusChem ; 13(12): 3192-3198, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32243702

RESUMO

The synthesis of porous electrode materials is often linked with the generation of waste that results from extensive purification steps and low mass yield. In contrast to porous carbons, covalent triazine frameworks (CTFs) display modular properties on a molecular basis through appropriate choice of the monomer. Herein, the synthesis of a new pyridine-based CTF material is showcased. The porosity and nitrogen-doping are tuned by a careful choice of the reaction temperature. An in-depth structural characterization by using Ar physisorption, X-ray photoelectron spectroscopy, and Raman spectroscopy was conducted to give a rational explanation of the material properties. Without any purification, the samples were applied as symmetrical supercapacitors and showed a specific capacitance of 141 F g-1 . Residual ZnCl2 , which acted formerly as the porogen, was used directly as the electrolyte salt. Upon the addition of water, ZnCl2 was dissolved to form the aqueous electrolyte in situ. Thereby, extensive and time-consuming washing steps could be circumvented.

13.
Chem Sci ; 11(35): 9468-9479, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34094213

RESUMO

Framework materials at the molecular level, such as metal-organic frameworks (MOF), were recently found to exhibit exotic and counterintuitive micromechanical properties. Stimulated by host-guest interactions, these so-called soft porous crystals can display counterintuitive adsorption phenomena such as negative gas adsorption (NGA). NGA materials are bistable frameworks where the occurrence of a metastable overloaded state leads to pressure amplification upon a sudden framework contraction. How can we control activation barriers and energetics via functionalization of the molecular building blocks that dictate the frameworks' mechanical response? In this work we tune the elastic and inelastic properties of building blocks at the molecular level and analyze the mechanical response of the resulting frameworks. From a set of 11 frameworks, we demonstrate that widening of the backbone increases stiffness, while elongation of the building blocks results in a decrease in critical yield stress of buckling. We further functionalize the backbone by incorporation of sp3 hybridized carbon atoms to soften the molecular building blocks, or stiffen them with sp2 and sp carbons. Computational modeling shows how these modifications of the building blocks tune the activation barriers within the energy landscape of the guest-free bistable frameworks. Only frameworks with free energy barriers in the range of 800 to 1100 kJ mol-1 per unit cell, and moderate yield stress of 0.6 to 1.2 nN for single ligand buckling, exhibit adsorption-induced contraction and negative gas adsorption. Advanced experimental in situ methodologies give detailed insights into the structural transitions and the adsorption behavior. The new framework DUT-160 shows the highest magnitude of NGA ever observed for nitrogen adsorption at 77 K. Our computational and experimental analysis of the energetics and mechanical response functions of porous frameworks is an important step towards tuning activation barriers in dynamic framework materials and provides critical design principles for molecular building blocks leading to pressure amplifying materials.

14.
Nat Commun ; 10(1): 3632, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406113

RESUMO

Switchable metal-organic frameworks (MOFs) have been proposed for various energy-related storage and separation applications, but the mechanistic understanding of adsorption-induced switching transitions is still at an early stage. Here we report critical design criteria for negative gas adsorption (NGA), a counterintuitive feature of pressure amplifying materials, hitherto uniquely observed in a highly porous framework compound (DUT-49). These criteria are derived by analysing the physical effects of micromechanics, pore size, interpenetration, adsorption enthalpies, and the pore filling mechanism using advanced in situ X-ray and neutron diffraction, NMR spectroscopy, and calorimetric techniques parallelised to adsorption for a series of six isoreticular networks. Aided by computational modelling, we identify DUT-50 as a new pressure amplifying material featuring distinct NGA transitions upon methane and argon adsorption. In situ neutron diffraction analysis of the methane (CD4) adsorption sites at 111 K supported by grand canonical Monte Carlo simulations reveals a sudden population of the largest mesopore to be the critical filling step initiating structural contraction and NGA. In contrast, interpenetration leads to framework stiffening and specific pore volume reduction, both factors effectively suppressing NGA transitions.

15.
Chem Commun (Camb) ; 55(62): 9140-9143, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31304489

RESUMO

Selective 13C-labelling of carboxylate carbons in the linker molecules of flexible metal-organic frameworks (MOFs) makes solid-state NMR spectroscopy very powerful to investigate solvent-induced local structural changes as demonstrated by 13C and 1H NMR spectroscopy on the pillared layer MOF DUT-8(Ni). Selective identification of polar solvent-node interactions becomes feasible.

16.
Inorg Chem ; 58(7): 4561-4573, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869884

RESUMO

A Cu2+-doped metal-organic framework (DUT-8(Ni0.98Cu0.02), M2(NDC)2DABCO, M = Ni, Cu, NDC = 2,6-napththalene dicarboxylate, DABCO = 1,4-diazabicyclo[2.2.2]octane, DUT = Dresden University of Technology) was synthesized in the form of large (>1 µm) and small crystals (<1 µm) to analyze their switchability by X-band continuous wave (cw) electron paramagnetic resonance (EPR) spectroscopy. The large crystals are flexible and in a porous open pore (op) phase after solvation in N, N-dimethylformamide (DMF), but in the activated solvent-free form, a nonporous closed pore (cp) phase forms. EPR measurements of the rigid Ni-free DUT-8(Cu) show a characteristic electron spin S = 1 room temperature signal of the antiferromagnetically coupled Cu2+-Cu2+ paddlewheel building unit of this metal-organic framework. None of the mixed metal DUT-8(Ni0.98Cu0.02) materials showed comparable signals, indicating the absence of dimeric Cu2+-Cu2+ paddlewheel units in the materials. Instead, characteristic electron spin S = 3/2 signals are detected for all DUT-8(Ni0.98Cu0.02) samples at temperatures T < 77 K, which can be assigned to ferromagnetically coupled mixed metal Ni2+-Cu2+ paddlewheel units. Those signals differ characteristically for the op and cp phase and enable monitoring the reversible op-cp transition during the de-/adsorption of DMF.

17.
J Phys Chem C Nanomater Interfaces ; 122(33): 19171-19179, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35601838

RESUMO

A highly porous metal-organic framework DUT-48, isoreticular to DUT-49, is reported with a high surface area of 4560 m2·g-1 and methane storage capacity up to 0.27 g·g-1 (164 cm3·cm-3) at 6.5 MPa and 298 K. The flexibility of DUT-48 and DUT-49 under external and internal (adsorption-induced) pressure is analyzed and rationalized using a combination of advanced experimental and computational techniques. While both networks undergo a contraction by mechanical pressure, only DUT-49 shows adsorption-induced structural transitions and negative gas adsorption of n-butane and nitrogen. This adsorption behavior was analyzed by microcalorimetry measurements and molecular simulations to provide an explanation for the lack of adsorption-induced breathing in DUT-48. It was revealed that for DUT-48, a significantly lower adsorption enthalpy difference and a higher framework stiffness prevent adsorption-induced structural transitions and negative gas adsorption. The mechanical behavior of both DUT-48 and DUT-49 was further analyzed by mercury porosimetry experiments and molecular simulations. Both materials exhibit large volume changes under hydrostatic compression, demonstrating noteworthy potential as shock absorbers with unprecedented high work energies.

18.
Dalton Trans ; 46(47): 16480-16484, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29147706

RESUMO

A chemically assisted top-down method for the synthesis of MOF-nanoplates was developed applying amine based delamination agents. Applied on a well described model structure, the layered MOF Cu2(bdc)2(DMF)2 (bdc - 1,4-benzenedicarboxylate), two different strategies of amine assisted delamination turned out to be successful to obtain nanoplates. Particles with thicknesses of around 70 nm were obtained by direct delamination of crystals using octylamine. The surfactant (polyvinylpyrrolidone) assisted synthesis combined with a post-synthetic amine delamination step enabled a further reduction of the thickness of the MOF nanoplates down to 4-14 nm.

19.
Dalton Trans ; 46(40): 14002-14011, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28976513

RESUMO

Controlled nucleation in a micromixer and further crystal growth were used to synthesize Ni2(2,6-ndc)2dabco (2,6-ndc - 2,6-naphthalenedicarboxylate, dabco - 1,4-diazabicyclo[2.2.2]octane), also termed DUT-8(Ni) (DUT = Dresden University of Technology), with narrow particle size distribution in a range of a few nm to several µm. The crystal size was found to significantly affect the switching characteristics, in particular the gate opening pressure in nitrogen adsorption isotherms at 77 K for this highly porous and flexible network. Below a critical size of about 500 nm, a type Ia isotherm typical of rigid MOFs is observed, while above approximately 1000 nm a pronounced gating behaviour is detected, starting at p/p0 = 0.2. With increasing crystal size this transition gate becomes steeper indicating a more uniform distribution of activation energies within the crystal ensemble. At an intermediate size (500-1000 nm), the DUT-8(Ni) crystals close during activation but cannot be reopened by nitrogen at 77 K possibly indicating monodomain switching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...