Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 898: 165543, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453705

RESUMO

Many landscapes worldwide are characterized by the presence of a mosaic of forest patches with contrasting age and size embedded in a matrix of agricultural land. However, our understanding of the effects of these key forest patch features on the soil nutrient status (in terms of nitrogen, carbon, and phosphorus) and soil pH is still limited due to a lack of large-scale data. To address this research gap, we analyzed 830 soil samples from nearly 200 forest patches varying in age (recent versus ancient forests) and size (small versus larger patches) along a 2500-km latitudinal gradient across Europe. We also considered environmental covariates at multiple scales to increase the generality of our research, including variation in macroclimate, nitrogen deposition rates, forest cover in a buffer zone, basal area and soil type. Multiple linear mixed-effects models were performed to test the combined effects of patch features and environmental covariates on soil nutrients and pH. Recent patches had higher total soil phosphorus concentrations and stocks in the mineral soil layer, along with a lower nitrogen to phosphorus ratio within that layer. Small patches generally had a higher mineral soil pH. Mineral soil nitrogen stocks were lower in forest patches with older age and larger size, as a result of a significant interactive effect. Additionally, environmental covariates had significant effects on soil nutrients, including carbon, nitrogen, phosphorus, and their stoichiometry, depending on the specific covariates. In some cases, the effect of patch age on mineral soil phosphorus stocks was greater than that of environmental covariates. Our findings underpin the important roles of forest patch age and size for the forest soil nutrient status. Long-term studies assessing edge effects and soil development in post-agricultural forests are needed, especially in a context of changing land use and climate.

2.
Ticks Tick Borne Dis ; 11(6): 101509, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32993929

RESUMO

Ixodes ricinus is the most common and widely distributed tick species in Europe, responsible for several zoonotic diseases, including Lyme borreliosis. Population genetics of disease vectors is a useful tool for understanding the spread of pathogens and infection risks. Despite the threat to the public health due to the climate-driven distribution changes of I. ricinus, the genetic structure of tick populations, though essential for understanding epidemiology, remains unclear. Previous studies have demonstrated weak to no apparent spatial pattern of genetic differentiation between European populations. Here, we analysed the population genetic structure of 497 individuals from 28 tick populations sampled from 20 countries across Europe, the Middle-East, and northern Africa. We analysed 125 SNPs loci after quality control. We ran Bayesian and multivariate hierarchical clustering analyses to identify and describe clusters of genetically related individuals. Both clustering methods support the identification of three spatially-structured clusters. Individuals from the south and north-western parts of Eurasia form a separated cluster from northern European populations, while central European populations are a mix between the two groups. Our findings have important implications for understanding the dispersal processes that shape the spread of zoonotic diseases under anthropogenic global changes.


Assuntos
Variação Genética , Ixodes/genética , Distribuição Animal , Animais , Teorema de Bayes , Europa (Continente) , Análise Multivariada , Polimorfismo de Nucleotídeo Único
3.
Sci Total Environ ; 619-620: 1319-1329, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29734609

RESUMO

Small forest patches embedded in agricultural (and peri-urban) landscapes in Western Europe play a key role for biodiversity conservation with a recognized capacity of delivering a wide suite of ecosystem services. Measures aimed to preserve these patches should be both socially desirable and ecologically effective. This study presents a joint ecologic and economic assessment conducted on small forest patches in Flanders (Belgium) and Picardie (N France). In each study region, two contrasted types of agricultural landscapes were selected. Open field (OF) and Bocage (B) landscapes are distinguished by the intensity of their usage and higher connectivity in the B landscapes. The social demand for enhancing biodiversity and forest structure diversity as well as for increasing the forest area at the expenses of agricultural land is estimated through an economic valuation survey. These results are compared with the outcomes of an ecological survey where the influence of structural features of the forest patches on the associated herbaceous diversity is assessed. The ecological and economic surveys show contrasting results; increasing tree species richness is ecologically more important for herbaceous diversity in the patch, but both tree species richness and herbaceous diversity obtain insignificant willingness to pay estimates. Furthermore, although respondents prefer the proposed changes to take place in the region where they live, we find out that social preferences and ecological effectiveness do differ between landscapes that represent different intensities of land use. Dwellers where the landscape is perceived as more "degraded" attach more value to diversity enhancement, suggesting a prioritization of initiatives in these area. In contrast, the ecological analyses show that prioritizing the protection and enhancement of the relatively better-off areas is more ecologically effective. Our study calls for a balance between ecological effectiveness and welfare benefits, suggesting that cost effectiveness studies should consider these approaches jointly.

4.
Ticks Tick Borne Dis ; 9(5): 1143-1152, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29716838

RESUMO

An increasing number of studies have investigated the consequences of biodiversity loss for the occurrence of vector-borne diseases such as Lyme borreliosis, the most common tick-borne disease in the northern hemisphere. As host species differ in their ability to transmit the Lyme borreliosis bacteria Borrelia burgdorferi s.l. to ticks, increased host diversity can decrease disease prevalence by increasing the proportion of dilution hosts, host species that transmit pathogens less efficiently. Previous research shows that Lyme borreliosis risk differs between forest types and suggests that a higher diversity of host species might dilute the contribution of small rodents to infect ticks with B. afzelii, a common Borrelia genospecies. However, empirical evidence for a dilution effect in Europe is largely lacking. We tested the dilution effect hypothesis in 19 Belgian forest stands of different forest types along a diversity gradient. We used empirical data and a Bayesian belief network to investigate the impact of the proportion of dilution hosts on the density of ticks infected with B. afzelii, and identified the key drivers determining the density of infected ticks, which is a measure of human infection risk. Densities of ticks and B. afzelii infection prevalence differed between forest types, but the model indicated that the density of infected ticks is hardly affected by dilution. The most important variables explaining variability in disease risk were related to the density of ticks. Combining empirical data with a model-based approach supported decision making to reduce tick-borne disease risk. We found a low probability of a dilution effect for Lyme borreliosis in a north-western European context. We emphasize that under these circumstances, Lyme borreliosis prevention should rather aim at reducing tick-human contact rate instead of attempting to increase the proportion of dilution hosts.


Assuntos
Biodiversidade , Florestas , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doenças Transmitidas por Carrapatos/transmissão , Animais , Teorema de Bayes , Bélgica/epidemiologia , Borrelia burgdorferi/isolamento & purificação , Grupo Borrelia Burgdorferi/isolamento & purificação , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Ixodes/fisiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Roedores/microbiologia , Roedores/parasitologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/prevenção & controle
5.
Parasit Vectors ; 11(1): 23, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310722

RESUMO

BACKGROUND: The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. METHODS: We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. RESULTS: During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood. CONCLUSIONS: Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further.


Assuntos
Borrelia burgdorferi/isolamento & purificação , Portador Sadio , Ecossistema , Exposição Ambiental , Ixodes/microbiologia , Animais , Europa (Continente) , Florestas , Modelos Estatísticos , Prevalência , Estações do Ano
6.
BMC Ecol ; 17(1): 31, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28874197

RESUMO

BACKGROUND: The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. RESULTS: Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. CONCLUSIONS: Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the microhabitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and ecosystem management on I. ricinus abundance.


Assuntos
Ixodes/fisiologia , Animais , Mudança Climática , Ecossistema , Feminino , Florestas , França , Masculino , Densidade Demográfica
7.
Ticks Tick Borne Dis ; 8(5): 795-798, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28641955

RESUMO

In recent years the number of newly described tick-borne phleboviruses has been steadily growing. Some of these novel viruses are highly pathogenic in humans, e.g. the Heartland and severe fever with thrombocytopenia syndrome virus. We aimed to analyse ticks sampled across Europe to investigate the diversity of phleboviruses using a comprehensive PCR-based screening approach. A total of 4387 ticks were collected from the vegetation in regions of France, Belgium, Germany, Sweden, and Estonia, respectively. Ticks were pooled and 22/979 pools tested positive using a PCR targeting the large (L) segment of phleboviruses. Phylogenetic analysis of a 500-bp fragment of the L segment showed a distinct novel clade provisionally named Glabbeek/Osterholz group (Belgium and Germany). In addition, sequences from ticks sampled in France clustered together with the recently described Antigone virus from Greece and AnLuc from Portugal. Our results extend the current diversity of phleboviruses in Europe. Future research should address the ecological processes driving the occurrence of phleboviruses and the impact of these novel phleboviruses for public health.


Assuntos
Dermacentor/virologia , Genes Virais/genética , Ixodes/virologia , Phlebovirus/classificação , Phlebovirus/genética , Animais , Europa (Continente) , Feminino , Masculino , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...