Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118842, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619388

RESUMO

Metal-organic frameworks (MOFs) are attractive functional materials due to their high surface area, high porosity, and flexible compositions. However, the high precursor cost and complex synthetic processes hinder their large-scale applications. Herein, a novel green approach has been developed toward the synthesis of Cu-based MOF by a solvent-free mechano-synthesis method and utilizing consumed polyethylene terephthalate (PET)-derived benzenedicarboxylate (BDC) as the linker. The as-prepared CuBDC and aminated CuBDC (CuBDC-NH2) act as green catalysts for the reduction of deleterious 4-nitrophenol (4-NP) into the value-added 4-aminophenol (4-AP). Compared with CuBDC, CuBDC-NH2 shows increased adsorption capability and reduction efficiency. The mechanism and thermodynamic studies suggest that the adsorption of 4-NP on CuBDC-NH2 is an endothermic, spontaneous, favorable, and physical adsorption process. Furthermore, CuBDC-NH2 can expedite the reduction of 4-NP by participating in an adsorptive catalytic process. With the CuBDC-NH2 catalyst, the catalytic normalized kinetic rate of 4-NP was achieved 11.28 mol/min. mg, outperforming state-of-the-art catalysts, and a complete reduction occur in 5 min for a concentrated effluent (200-ppm 4-NP). The plastic waste-derived MOF-mediated catalytic valorization of organic pollutants demonstrated here opens an avenue for the green recycling/utilization of plastic waste, providing meaningful insights into the sustainable management of organic pollutants in wastewater.


Assuntos
Poluentes Ambientais , Polietilenotereftalatos , Nitrofenóis
2.
Environ Res ; 227: 115736, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963712

RESUMO

The catalytic activity of pure metal nanoparticles is always limited by aggregation during the reaction. Therefore, promising candidates such as metal-organic frameworks possess benefits due to their 3D porous structures, high stability, and high specific surface area. In this study, effective and reusable catalysts based on M-BDC metal-organic frameworks were synthesized utilizing five different coordinating metal ions (M = Ag, Co, Cr, Mn, and Zr) as metal nodes and 1-4-benzene dicarboxylic acid (BDC) as an organic linker and used in catalytic reduction of 4-Nitrophenol (4-NP) to 4-Aminophenol (4-AP) for the first time. The as-prepared catalysts were characterized using SEM, EDX, XRD, and FTIR techniques. Based on catalytic performance, Co-BDC showed the best catalytic efficiency compared to the other M-BDC MOF catalysts with a conversion yield of about 99.25 in 2 min. All of the catalysts could catalyze the complete reduction of 4-NP to 4-AP at different reaction times (2-10); however, Mn-BDC could not finish the catalytic reduction reaction even after 20 min. The two more efficient catalysts including Co-BDC and Cr-BDC demonstrated high stability and reusability (more than 85% catalytic efficiency) even after 5 cycles.


Assuntos
Estruturas Metalorgânicas , Benzeno , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA