Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Oncol ; 14: 1358350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549943

RESUMO

Background: MR-Linac allows for daily online treatment adaptation to the observed geometry of tumor targets and organs at risk (OARs). Manual delineation for head and neck cancer (HNC) patients takes 45-75 minutes, making it unsuitable for online adaptive radiotherapy. This study aims to clinically and dosimetrically validate an in-house developed algorithm which automatically delineates the elective target volume and OARs for HNC patients in under a minute. Methods: Auto-contours were generated by an in-house model with 2D U-Net architecture trained and tested on 52 MRI scans via leave-one-out cross-validation. A randomized selection of 684 automated and manual contours (split half-and-half) was presented to an oncologist to perform a blind test and determine the clinical acceptability. The dosimetric impact was investigated for 13 patients evaluating the differences in dosage for all structures. Results: Automated contours were generated in 8 seconds per MRI scan. The blind test concluded that 114 (33%) of auto-contours required adjustments with 85 only minor and 15 (4.4%) of manual contours required adjustments with 12 only minor. Dosimetric analysis showed negligible dosimetric differences between clinically acceptable structures and structures requiring minor changes. The Dice Similarity coefficients for the auto-contours ranged from 0.66 ± 0.11 to 0.88 ± 0.06 across all structures. Conclusion: Majority of auto-contours were clinically acceptable and could be used without any adjustments. Majority of structures requiring minor adjustments did not lead to significant dosimetric differences, hence manual adjustments were needed only for structures requiring major changes, which takes no longer than 10 minutes per patient.

2.
Phys Med Biol ; 69(5)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38266298

RESUMO

Objective.Respiratory motion of lung tumours and adjacent structures is challenging for radiotherapy. Online MR-imaging cannot currently provide real-time volumetric information of the moving patient anatomy, therefore limiting precise dose delivery, delivered dose reconstruction, and downstream adaptation methods.Approach.We tailor a respiratory motion modelling framework towards an MR-Linac workflow to estimate the time-resolved 4D motion from real-time data. We develop a multi-slice acquisition scheme which acquires thick, overlapping 2D motion-slices in different locations and orientations, interleaved with 2D surrogate-slices from a fixed location. The framework fits a motion model directly to the input data without the need for sorting or binning to account for inter- and intra-cycle variation of the breathing motion. The framework alternates between model fitting and motion-compensated super-resolution image reconstruction to recover a high-quality motion-free image and a motion model. The fitted model can then estimate the 4D motion from 2D surrogate-slices. The framework is applied to four simulated anthropomorphic datasets and evaluated against known ground truth anatomy and motion. Clinical applicability is demonstrated by applying our framework to eight datasets acquired on an MR-Linac from four lung cancer patients.Main results.The framework accurately reconstructs high-quality motion-compensated 3D images with 2 mm3isotropic voxels. For the simulated case with the largest target motion, the motion model achieved a mean deformation field error of 1.13 mm. For the patient cases residual error registrations estimate the model error to be 1.07 mm (1.64 mm), 0.91 mm (1.32 mm), and 0.88 mm (1.33 mm) in superior-inferior, anterior-posterior, and left-right directions respectively for the building (application) data.Significance.The motion modelling framework estimates the patient motion with high accuracy and accurately reconstructs the anatomy. The image acquisition scheme can be flexibly integrated into an MR-Linac workflow whilst maintaining the capability of online motion-management strategies based on cine imaging such as target tracking and/or gating.


Assuntos
Neoplasias Pulmonares , Radioterapia Guiada por Imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Imageamento Tridimensional , Respiração , Radioterapia Guiada por Imagem/métodos
3.
Med Phys ; 51(3): 2221-2229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37898109

RESUMO

BACKGROUND: Real-time dose estimation is a key-prerequisite to enable online intra-fraction treatment adaptation in magnetic resonance (MR)-guided radiotherapy (MRgRT). It is an essential component for the assessment of the dosimetric benefits and risks of online adaptive treatments, such as multi-leaf collimator (MLC)-tracking. PURPOSE: We present a proof-of-concept for a software workflow for real-time dose estimation of MR-guided adaptive radiotherapy based on real-time data-streams of the linac delivery parameters and target positions. METHODS: A software workflow, combining our in-house motion management software DynaTrack, a real-time dose calculation engine that connects to a research version of the treatment planning software (TPS) Monaco (v.6.09.00, Elekta AB, Stockholm, Sweden) was developed and evaluated. MR-guided treatment delivery on the Elekta Unity MR-linac was simulated with and without MLC-tracking for three prostate patients, previously treated on the Elekta Unity MR-linac (36.25 Gy/five fractions). Three motion scenarios were used: no motion, regular motion, and erratic prostate motion. Accumulated monitor units (MUs), centre of mass target position and MLC-leaf positions, were forwarded from DynaTrack at a rate of 25 Hz to a Monte Carlo (MC) based dose calculation engine which utilises the research GPUMCD-library (Elekta AB, Stockholm, Sweden). A rigid isocentre shift derived from the selected motion scenarios was applied to a bulk density-assigned session MR-image. The respective electron density used for treatment planning was accessed through the research Monaco TPS. The software workflow including the online dose reconstruction was validated against offline dose reconstructions. Our investigation showed that MC-based real-time dose calculations that account for all linac states (including MUs, MLC positions and target position) were infeasible, hence states were randomly sampled and used for calculation as follows; Once a new linac state was received, a dose calculation with 106 photons was started. Linac states that arrived during the time of the ongoing calculation were put into a queue. After completion of the ongoing calculation, one new linac state was randomly picked from the queue and assigned the MU accumulated from the previous state until the last sample in the queue. The queue was emptied, and the process repeated throughout treatment simulation. RESULTS: On average 27% (23%-30%) of received samples were used in the real-time calculation, corresponding to a calculation time for one linac state of 148 ms. Median gamma pass rate (2%/3 mm local) was 100.0% (99.9%-100%) within the PTV volume and 99.1% (90.1%-99.4.0%) with a 15% dose cut off. Differences in PTVDmean , CTVDmean , RectumD2% , and BladderD2% (offline-online, % of prescribed dose) were below 0.64%. Beam-by-beam comparisons showed deviations below 0.07 Gy. Repeated simulations resulted in standard deviations below 0.31% and 0.12 Gy for the investigated volume and dose criteria respectively. CONCLUSIONS: Real-time dose estimation was successfully performed using the developed software workflow for different prostate motion traces with and without MLC-tracking. Negligible dosimetric differences were seen when comparing online and offline reconstructed dose, enabling online intra-fraction treatment decisions based on estimates of the delivered dose.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Masculino , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Movimento (Física) , Simulação por Computador , Etoposídeo , Espectroscopia de Ressonância Magnética , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Imageamento por Ressonância Magnética/métodos
4.
Phys Med ; 109: 102579, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37068428

RESUMO

PURPOSE: In addition to patient set-up uncertainties, anatomical deformations, e.g., weight loss, lead to time-dependent differences between the planned and delivered dose in a radiotherapy course that currently cannot easily be predicted. The aim of this study was to create time-varying prediction models to describe both the average and residual anatomical deformations. METHODS: Weekly population-based principal component analysis models were generated from on-treatment cone-beam CT scans (CBCTs) of 30 head and neck cancer patients, with additional data of 35 patients used as a validation cohort. We simulated treatment courses accounting for a) anatomical deformations, b) set-up uncertainties and c) a combination of both. The dosimetric effects of the simulated deformations were compared to a direct dose accumulation based on deformable registration of the CBCT data. RESULTS: Set-up uncertainties were seen to have a larger effect on the organ at risk (OAR) doses than anatomical deformations for all OARs except the larynx and the primary CTV. Distributions from simulation results were in good agreement with those of the accumulated dose. CONCLUSIONS: We present a novel method of modelling time-varying organ deformations in head and neck cancer. The effect on the OAR doses from these deformations are smaller than the effect of set-up uncertainties for most OARs. These models can, for instance, be used to predict which patients could benefit from adaptive radiotherapy, prior to commencing treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Dosagem Radioterapêutica , Tomografia Computadorizada de Feixe Cônico/métodos
5.
Med Phys ; 48(9): 5406-5413, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34101858

RESUMO

PURPOSE: MR-guided radiotherapy has different requirements for the images than diagnostic radiology, thus requiring development of novel imaging sequences. MRI simulation is an excellent tool for optimizing these new sequences; however, currently available software does not provide all the necessary features. In this paper, we present a digital framework for testing MRI sequences that incorporates anatomical structure, respiratory motion, and realistic presentation of MR physics. METHODS: The extended Cardiac-Torso (XCAT) software was used to create T1 , T2 , and proton density maps that formed the anatomical structure of the phantom. Respiratory motion model was based on the XCAT deformation vector fields, modified to create a motion model driven by a respiration signal. MRI simulation was carried out with JEMRIS, an open source Bloch simulator. We developed an extension for JEMRIS, which calculates the motion of each spin independently, allowing for deformable motion. RESULTS: The performance of the framework was demonstrated through simulating the acquisition of a two-dimensional (2D) cine and demonstrating expected motion ghosts from T2 weighted spin echo acquisitions with different respiratory patterns. All simulations were consistent with behavior previously described in literature. Simulations with deformable motion were not more time consuming than with rigid motion. CONCLUSIONS: We present a deformable four-dimensional (4D) digital phantom framework for MR sequence development. The framework incorporates anatomical structure, realistic breathing patterns, deformable motion, and Bloch simulation to achieve accurate simulation of MRI. This method is particularly relevant for testing novel imaging sequences for the purpose of MR-guided radiotherapy in lungs and abdomen.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Simulação por Computador , Movimento (Física) , Imagens de Fantasmas
6.
Biomed Phys Eng Express ; 6(4): 045015, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33194224

RESUMO

An MR-Linac can provide motion information of tumour and organs-at-risk before, during, and after beam delivery. However, MR imaging cannot provide real-time high-quality volumetric images which capture breath-to-breath variability of respiratory motion. Surrogate-driven motion models relate the motion of the internal anatomy to surrogate signals, thus can estimate the 3D internal motion from these signals. Internal surrogate signals based on patient anatomy can be extracted from 2D cine-MR images, which can be acquired on an MR-Linac during treatment, to build and drive motion models. In this paper we investigate different MRI-derived surrogate signals, including signals generated by applying principal component analysis to the image intensities, or control point displacements derived from deformable registration of the 2D cine-MR images. We assessed the suitability of the signals to build models that can estimate the motion of the internal anatomy, including sliding motion and breath-to-breath variability. We quantitatively evaluated the models by estimating the 2D motion in sagittal and coronal slices of 8 lung cancer patients, and comparing them to motion measurements obtained from image registration. For sagittal slices, using the first and second principal components on the control point displacements as surrogate signals resulted in the highest model accuracy, with a mean error over patients around 0.80 mm which was lower than the in-plane resolution. For coronal slices, all investigated signals except the skin signal produced mean errors over patients around 1 mm. These results demonstrate that surrogate signals derived from 2D cine-MR images, including those generated by applying principal component analysis to the image intensities or control point displacements, can accurately model the motion of the internal anatomy within a single sagittal or coronal slice. This implies the signals should also be suitable for modelling the 3D respiratory motion of the internal anatomy.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Respiração , Idoso , Algoritmos , Diafragma/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Imagens de Fantasmas , Análise de Componente Principal , Radioterapia Guiada por Imagem/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos
7.
Phys Med Biol ; 65(16): 165005, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32235043

RESUMO

Breathing motion is challenging for radiotherapy planning and delivery. This requires advanced four-dimensional (4D) imaging and motion mitigation strategies and associated validation tools with known deformations. Numerical phantoms such as the XCAT provide reproducible and realistic data for simulation-based validation. However, the XCAT generates partially inconsistent and non-invertible deformations where tumours remain rigid and structures can move through each other. We address these limitations by post-processing the XCAT deformation vector fields (DVF) to generate a breathing phantom with realistic motion and quantifiable deformation. An open-source post-processing framework was developed that corrects and inverts the XCAT-DVFs while preserving sliding motion between organs. Those post-processed DVFs are used to warp the first XCAT-generated image to consecutive time points providing a 4D phantom with a tumour that moves consistently with the anatomy, the ability to scale lung density as well as consistent and invertible DVFs. For a regularly breathing case, the inverse consistency of the DVFs was verified and the tumour motion was compared to the original XCAT. The generated phantom and DVFs were used to validate a motion-including dose reconstruction (MIDR) method using isocenter shifts to emulate rigid motion. Differences between the reconstructed doses with and without lung density scaling were evaluated. The post-processing framework produced DVFs with a maximum [Formula: see text]-percentile inverse-consistency error of 0.02 mm. The generated phantom preserved the dominant sliding motion between the chest wall and inner organs. The tumour of the original XCAT phantom preserved its trajectory while deforming consistently with the underlying tissue. The MIDR was compared to the ground truth dose reconstruction illustrating its limitations. MIDR with and without lung density scaling resulted in small dose differences up to 1 Gy (prescription 54 Gy). The proposed open-source post-processing framework overcomes important limitations of the original XCAT phantom and makes it applicable to a wider range of validation applications within radiotherapy.


Assuntos
Tomografia Computadorizada Quadridimensional/instrumentação , Imagens de Fantasmas , Respiração , Humanos , Movimento , Reprodutibilidade dos Testes
8.
Phys Med Biol ; 64(15): 15TR01, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31226704

RESUMO

Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Movimento (Física)
9.
Radiother Oncol ; 125(3): 485-491, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029832

RESUMO

BACKGROUND AND PURPOSE: Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. MATERIAL AND METHODS: Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. RESULTS: Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. CONCLUSION: Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance.


Assuntos
Neoplasias Pulmonares/radioterapia , Imagem Cinética por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Idoso , Algoritmos , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade
10.
Med Phys ; 44(9): 4573-4592, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28477346

RESUMO

PURPOSE: To compare two methods of automatic breast segmentation with each other and with manual segmentation in a large subject cohort. To discuss the factors involved in selecting the most appropriate algorithm for automatic segmentation and, in particular, to investigate the appropriateness of overlap measures (e.g., Dice and Jaccard coefficients) as the primary determinant in algorithm selection. METHODS: Two methods of breast segmentation were applied to the task of calculating MRI breast density in 200 subjects drawn from the Avon Longitudinal Study of Parents and Children, a large cohort study with an MRI component. A semiautomated, bias-corrected, fuzzy C-means (BC-FCM) method was combined with morphological operations to segment the overall breast volume from in-phase Dixon images. The method makes use of novel, problem-specific insights. The resulting segmentation mask was then applied to the corresponding Dixon water and fat images, which were combined to give Dixon MRI density values. Contemporaneously acquired T1 - and T2 -weighted image datasets were analyzed using a novel and fully automated algorithm involving image filtering, landmark identification, and explicit location of the pectoral muscle boundary. Within the region found, fat-water discrimination was performed using an Expectation Maximization-Markov Random Field technique, yielding a second independent estimate of MRI density. RESULTS: Images are presented for two individual women, demonstrating how the difficulty of the problem is highly subject-specific. Dice and Jaccard coefficients comparing the semiautomated BC-FCM method, operating on Dixon source data, with expert manual segmentation are presented. The corresponding results for the method based on T1 - and T2 -weighted data are slightly lower in the individual cases shown, but scatter plots and interclass correlations for the cohort as a whole show that both methods do an excellent job in segmenting and classifying breast tissue. CONCLUSIONS: Epidemiological results demonstrate that both methods of automated segmentation are suitable for the chosen application and that it is important to consider a range of factors when choosing a segmentation algorithm, rather than focus narrowly on a single metric such as the Dice coefficient.


Assuntos
Algoritmos , Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética , Feminino , Humanos , Estudos Longitudinais , Radiografia
11.
Phys Med Biol ; 61(2): R1-31, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26733349

RESUMO

Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.


Assuntos
Neoplasias da Mama/patologia , Interpretação de Imagem Assistida por Computador/métodos , Fenômenos Biomecânicos , Simulação por Computador , Feminino , Humanos , Mamografia/métodos
12.
Ann Biomed Eng ; 44(1): 154-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26577254

RESUMO

Prone-to-supine breast image registration has potential application in the fields of surgical and radiotherapy planning, image guided interventions, and multi-modal cancer diagnosis, staging, and therapy response prediction. However, breast image registration of three dimensional images acquired in different patient positions is a challenging problem, due to large deformations induced to the soft breast tissue caused by the change in gravity loading. We present a symmetric, biomechanical simulation based registration framework which aligns the images in a central, virtually unloaded configuration. The breast tissue is modelled as a neo-Hookean material and gravity is considered as the main source of deformation in the original images. In addition to gravity, our framework successively applies image derived forces directly into the unloading simulation in place of a subsequent image registration step. This results in a biomechanically constrained deformation. Using a finite difference scheme avoids an explicit meshing step and enables simulations to be performed directly in the image space. The explicit time integration scheme allows the motion at the interface between chest and breast to be constrained along the chest wall. The feasibility and accuracy of the approach presented here was assessed by measuring the target registration error (TRE) using a numerical phantom with known ground truth deformations, nine clinical prone MRI and supine CT image pairs, one clinical prone-supine CT image pair and four prone-supine MRI image pairs. The registration reduced the mean TRE for the numerical phantom experiment from initially 19.3 to 0.9 mm and the combined mean TRE for all fourteen clinical data sets from 69.7 to 5.6 mm.


Assuntos
Mama , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Mamografia , Tomografia Computadorizada por Raios X , Feminino , Humanos , Decúbito Ventral , Decúbito Dorsal
13.
IEEE Trans Med Imaging ; 33(3): 682-94, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24595342

RESUMO

Preoperative diagnostic magnetic resonance (MR) breast images can provide good contrast between different tissues and 3-D information about suspicious tissues. Aligning preoperative diagnostic MR images with a patient in the theatre during breast conserving surgery could assist surgeons in achieving the complete excision of cancer with sufficient margins. Typically, preoperative diagnostic MR breast images of a patient are obtained in the prone position, while surgery is performed in the supine position. The significant shape change of breasts between these two positions due to gravity loading, external forces and related constraints makes the alignment task extremely difficult. Our previous studies have shown that either nonrigid intensity-based image registration or biomechanical modelling alone are limited in their ability to capture such a large deformation. To tackle this problem, we proposed in this paper a nonlinear biomechanical model-based image registration method with a simultaneous optimization procedure for both the material parameters of breast tissues and the direction of the gravitational force. First, finite element (FE) based biomechanical modelling is used to estimate a physically plausible deformation of the pectoral muscle and the major deformation of breast tissues due to gravity loading. Then, nonrigid intensity-based image registration is employed to recover the remaining deformation that FE analyses do not capture due to the simplifications and approximations of biomechanical models and the uncertainties of external forces and constraints. We assess the registration performance of the proposed method using the target registration error of skin fiducial markers and the Dice similarity coefficient (DSC) of fibroglandular tissues. The registration results on prone and supine MR image pairs are compared with those from two alternative nonrigid registration methods for five breasts. Overall, the proposed algorithm achieved the best registration performance on fiducial markers (target registration error, 8.44 ±5.5 mm for 45 fiducial markers) and higher overlap rates on segmentation propagation of fibroglandular tissues (DSC value > 82%).


Assuntos
Fenômenos Biomecânicos/fisiologia , Mama , Imageamento por Ressonância Magnética/métodos , Postura/fisiologia , Mama/anatomia & histologia , Mama/fisiologia , Feminino , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dinâmica não Linear
14.
Neuroimage ; 59(2): 1338-47, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-21875673

RESUMO

Polarized light imaging (PLI) enables the visualization of fiber tracts with high spatial resolution in microtome sections of postmortem brains. Vectors of the fiber orientation defined by inclination and direction angles can directly be derived from the optical signals employed by PLI analysis. The polarization state of light propagating through a rotating polarimeter is varied in such a way that the detected signal of each spatial unit describes a sinusoidal signal. Noise, light scatter and filter inhomogeneities, however, interfere with the original sinusoidal PLI signals, which in turn have direct impact on the accuracy of subsequent fiber tracking. Recently we showed that the primary sinusoidal signals can effectively be restored after noise and artifact rejection utilizing independent component analysis (ICA). In particular, regions with weak intensities are greatly enhanced after ICA based artifact rejection and signal restoration. Here, we propose a user independent way of identifying the components of interest after decomposition; i.e., components that are related to gray and white matter. Depending on the size of the postmortem brain and the section thickness, the number of independent component maps can easily be in the range of a few ten thousand components for one brain. Therefore, we developed an automatic and, more importantly, user independent way of extracting the signal of interest. The automatic identification of gray and white matter components is based on the evaluation of the statistical properties of the so-called feature vectors of each individual component map, which, in the ideal case, shows a sinusoidal waveform. Our method enables large-scale analysis (i.e., the analysis of thousands of whole brain sections) of nerve fiber orientations in the human brain using polarized light imaging.


Assuntos
Algoritmos , Encéfalo/citologia , Interpretação de Imagem Assistida por Computador/métodos , Iluminação/métodos , Microscopia de Polarização/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Neurônios/citologia , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Front Neuroinform ; 5: 34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22232597

RESUMO

Functional interactions between different brain regions require connecting fiber tracts, the structural basis of the human connectome. To assemble a comprehensive structural understanding of neural network elements from the microscopic to the macroscopic dimensions, a multimodal and multiscale approach has to be envisaged. However, the integration of results from complementary neuroimaging techniques poses a particular challenge. In this paper, we describe a steadily evolving neuroimaging technique referred to as three-dimensional polarized light imaging (3D-PLI). It is based on the birefringence of the myelin sheaths surrounding axons, and enables the high-resolution analysis of myelinated axons constituting the fiber tracts. 3D-PLI provides the mapping of spatial fiber architecture in the postmortem human brain at a sub-millimeter resolution, i.e., at the mesoscale. The fundamental data structure gained by 3D-PLI is a comprehensive 3D vector field description of fibers and fiber tract orientations - the basis for subsequent tractography. To demonstrate how 3D-PLI can contribute to unravel and assemble the human connectome, a multiscale approach with the same technology was pursued. Two complementary state-of-the-art polarimeters providing different sampling grids (pixel sizes of 100 and 1.6 µm) were used. To exemplarily highlight the potential of this approach, fiber orientation maps and 3D fiber models were reconstructed in selected regions of the brain (e.g., Corpus callosum, Internal capsule, Pons). The results demonstrate that 3D-PLI is an ideal tool to serve as an interface between the microscopic and macroscopic levels of organization of the human connectome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...