Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Cancer ; 23(1): 83, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38730475

RESUMO

BACKGROUND: Active targeting by surface-modified nanoplatforms enables a more precise and elevated accumulation of nanoparticles within the tumor, thereby enhancing drug delivery and efficacy for a successful cancer treatment. However, surface functionalization involves complex procedures that increase costs and timelines, presenting challenges for clinical implementation. Biomimetic nanoparticles (BNPs) have emerged as unique drug delivery platforms that overcome the limitations of actively targeted nanoparticles. Nevertheless, BNPs coated with unmodified cells show reduced functionalities such as specific tumor targeting, decreasing the therapeutic efficacy. Those challenges can be overcome by engineering non-patient-derived cells for BNP coating, but these are complex and cost-effective approaches that hinder their wider clinical application. Here we present an immune-driven strategy to improve nanotherapeutic delivery to tumors. Our unique perspective harnesses T-cell exhaustion and tumor immune evasion to develop a groundbreaking new class of BNPs crafted from exhausted T-cells (NExT) of triple-negative breast cancer (TNBC) patients by specific culture methods without sophisticated engineering. METHODS: NExT were generated by coating PLGA (poly(lactic-co-glycolic acid)) nanoparticles with TNBC-derived T-cells exhausted in vitro by acute activation. Physicochemical characterization of NExT was made by dynamic light scattering, electrophoretic light scattering and transmission electron microscopy, and preservation and orientation of immune checkpoint receptors by flow cytometry. The efficacy of chemotherapy-loaded NExT was assessed in TNBC cell lines in vitro. In vivo toxicity was made in CD1 mice. Biodistribution and therapeutic activity of NExT were determined in cell-line- and autologous patient-derived xenografts in immunodeficient mice. RESULTS: We report a cost-effective approach with a good performance that provides NExT naturally endowed with immune checkpoint receptors (PD1, LAG3, TIM3), augmenting specific tumor targeting by engaging cognate ligands, enhancing the therapeutic efficacy of chemotherapy, and disrupting the PD1/PDL1 axis in an immunotherapy-like way. Autologous patient-derived NExT revealed exceptional intratumor accumulation, heightened chemotherapeutic index and efficiency, and targeted the tumor stroma in a PDL1+ patient-derived xenograft model of triple-negative breast cancer. CONCLUSIONS: These advantages underline the potential of autologous patient-derived NExT to revolutionize tailored adoptive cancer nanotherapy and chemoimmunotherapy, which endorses their widespread clinical application of autologous patient-derived NExT.


Assuntos
Nanopartículas , Linfócitos T , Humanos , Animais , Camundongos , Nanopartículas/química , Feminino , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Evasão da Resposta Imune , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Front Immunol ; 15: 1295863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500875

RESUMO

Colorectal cancer (CRC) is a complex and heterogeneous disease characterized by dysregulated interactions between tumor cells and the immune system. The tumor microenvironment plays a pivotal role in cancer initiation as well as progression, with myeloid immune cells such as dendritic cell and macrophage subsets playing diverse roles in cancer immunity. On one hand, they exert anti-tumor effects, but they can also contribute to tumor growth. The AOM/DSS colitis-associated cancer mouse model has emerged as a valuable tool to investigate inflammation-driven CRC. To understand the role of different leukocyte populations in tumor development, the preparation of single cell suspensions from tumors has become standard procedure for many types of cancer in recent years. However, in the case of AOM/DSS-induced colorectal tumors, this is still challenging and rarely described. For one, to be able to properly distinguish tumor-associated immune cells, separate processing of cancerous and surrounding colon tissue is essential. In addition, cell yield, due to the low tumor mass, viability, as well as preservation of cell surface epitopes are important for successful flow cytometric profiling of tumor-infiltrating leukocytes. Here we present a fast, simple, and economical step-by-step protocol for isolating colorectal tumor-associated leukocytes from AOM/DSS-treated mice. Furthermore, we demonstrate the feasibility of this protocol for high-dimensional flow cytometric identification of the different tumor-infiltrating leukocyte populations, with a specific focus on myeloid cell subsets.


Assuntos
Neoplasias Colorretais , Animais , Camundongos , Azoximetano/efeitos adversos , Modelos Animais de Doenças , Citometria de Fluxo , Leucócitos/metabolismo , Microambiente Tumoral
3.
Biomater Adv ; 160: 213831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552501

RESUMO

Nanoparticle (NP) use in cancer therapy is extensively studied in skin cancers. Cancer-associated fibroblasts (CAFs), a major tumor microenvironment (TME) component, promote cancer progression, making dual targeting of cancer cells and CAFs an effective therapy. However, dual NP-based targeting therapy on both tumor cells and CAFs is poorly investigated in skin cancers. Herein, we prepared and characterized doxorubicin-loaded PLGA NPs (DOX@PLGA NPs) and studied their anti-tumor effects on cutaneous melanoma (SKCM)(AN, M14) and cutaneous squamous cell carcinoma (cSCC) (MET1, MET2) cell lines in monolayer, as well as their impact on CAF deactivation. Then, we established 3D full thickness models (FTM) models of SKCM and cSCC using AN or MET2 cells on dermis matrix populated with CAFs respectively, and assessed the NPs' tumor penetration, tumor-killing ability, and CAF phenotype regulation through both topical administration and intradermal injection. The results show that, in monolayer, DOX@PLGA NPs inhibited cancer cell growth and induced apoptosis in a dose- and time-dependent manner, with a weaker effect on CAFs. DOX@PLGA NPs reduced CAF-marker expression and had successful anti-tumor effects in 3D skin cancer FTMs, with decreased tumor-load and invasion. DOX@PLGA NPs also showed great delivery potential in the FTMs and could be used as a platform for future functional study of NPs in skin cancers using human-derived skin equivalents. This study provides promising evidence for the potential of DOX@PLGA NPs in dual targeting therapy for SKCM and cSCC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Escamosas , Doxorrubicina , Melanoma , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neoplasias Cutâneas , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Nanopartículas/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Animais , Microambiente Tumoral/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/uso terapêutico
6.
Biomater Adv ; 151: 213456, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196459

RESUMO

Cell-membrane-coated biomimetic nanoparticles (NPs) have attracted great attention due to their prolonged circulation time, immune escape mechanisms and homotypic targeting properties. Biomimetic nanosystems from different types of cell -membranes (CMs) can perform increasingly complex tasks in dynamic biological environments thanks to specific proteins and other properties inherited from the source cells. Herein, we coated doxorubicin (DOX)-loaded reduction-sensitive chitosan (CS) NPs with 4T1 cancer cell -membranes (CCMs), red blood cell -membranes (RBCMs) and hybrid erythrocyte-cancer membranes (RBC-4T1CMs) to enhance the delivery of DOX to breast cancer cells. The physicochemical properties (size, zeta potential and morphology) of the resulting RBC@DOX/CS-NPs, 4T1@DOX/CS-NPs and RBC-4T1@DOX/CS-NPs, as well as their cytotoxic effect and cellular NP uptake in vitro were thoroughly characterized. The anti-cancer therapeutic efficacy of the NPs was evaluated using the orthotopic 4T1 breast cancer model in vivo. The experimental results showed that DOX/CS-NPs had a DOX-loading capacity of 71.76 ± 0.87 %, and that coating of DOX/CS-NPs with 4T1CM significantly increased the NP uptake and cytotoxic effect in breast cancer cells. Interestingly, by optimizing the ratio of RBCMs:4T1CMs, it was possible to increase the homotypic targeting properties towards breast cancer cells. Moreover, in vivo tumor studies showed that compared to control DOX/CS-NPs and free DOX, both 4T1@DOX/CS-NPs and RBC@DOX/CS-NPs significantly inhibited tumor growth and metastasis. However, the effect of 4T1@DOX/CS-NPs was more prominent. Moreover, CM-coating reduced the uptake of NPs by macrophages and led to rapid clearance from the liver and lungs in vivo, compared to control NPs. Our results suggest that specific self-recognition to source cells resulting in homotypic targeting increased the uptake and the cytotoxic capacity of 4T1@DOX/CS-NPs by breast cancer cells in vitro and in vivo. In conclusion, tumor-disguised CM-coated DOX/CS-NPs exhibited tumor homotypic targeting and anti-cancer properties, and were superior over targeting with RBC-CM or RBC-4T1 hybrid membranes, suggesting that the presence of 4T1-CM is critical for treatment outcome.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Nanopartículas/química , Membrana Eritrocítica/química
7.
Biomater Adv ; 145: 213270, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603405

RESUMO

Although new strategies for breast cancer treatment have yielded promising results, most drugs can lead to serious side effects when applied systemically. Doxorubicin (DOX), currently the most effective chemotherapeutic drug to treat breast cancer, is poorly selective towards tumor cells and treatment often leads to the development of drug resistance. Recent studies have indicated that several fatty acids (FAs) have beneficial effects on inhibiting tumorigenesis. The saturated FA palmitic acid (PA) showed anti-tumor activities in several types of cancer, as well as effective repolarization of M2 macrophages towards the anti-tumorigenic M1 phenotype. However, water insolubility and cellular impermeability limit the use of PA in vivo. To overcome these limitations, here, we encapsulated PA into a poly(d,l-lactic co-glycolic acid) (PLGA) nanoparticle (NP) platform, alone and in combination with DOX, to explore PA's potential as mono or combinational breast cancer therapy. Our results showed that PLGA-PA-DOX NPs and PLGA-PA NPs significantly reduced the viability and migratory capacity of breast cancer cells in vitro. In vivo studies in mice bearing mammary tumors demonstrated that PLGA-PA-NPs were as effective in reducing primary tumor growth and metastasis as NPs loaded with DOX, PA and DOX, or free DOX. At the molecular level, PLGA-PA NPs reduced the expression of genes associated with multi-drug resistance and inhibition of apoptosis, and induced apoptosis via a caspase-3-independent pathway in breast cancer cells. In addition, immunohistochemical analysis of residual tumors showed a reduction in M2 macrophage content and infiltration of leukocytes after treatment of PLGA-PA NPs and PLGA-PA-DOX NPs, suggesting immunomodulatory properties of PA in the tumor microenvironment. In conclusion, the use of PA alone or in combination with DOX may represent a promising novel strategy for the treatment of breast cancer.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Ácido Palmítico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido Láctico/farmacologia , Nanopartículas/uso terapêutico , Nanopartículas/química , Microambiente Tumoral
8.
Pharmaceutics ; 14(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559291

RESUMO

Here, we describe the synthesis of a novel type of rare-earth-doped nanoparticles (NPs) for multimodal imaging, by combining the rare-earth elements Ce, Gd and Nd in a crystalline host lattice consisting of CaF2 (CaF2: Ce, Gd, Nd). CaF2: Ce, Gd, Nd NPs are small (15-20 nm), of uniform shape and size distribution, and show good biocompatibility and low immunogenicity in vitro. In addition, CaF2: Ce, Gd, Nd NPs possess excellent optical properties. CaF2: Ce, Gd, Nd NPs produce downconversion emissions in the second near-infrared window (NIR-II, 1000-1700 nm) under 808 nm excitation, with a strong emission peak at 1056 nm. Excitation in the first near- infrared window (NIR-I, 700-900 nm) has the advantage of deeper tissue penetration power and reduced autofluorescence, compared to visible light. Thus, CaF2: Ce, Gd, Nd NPs are ideally suited for in vivo fluorescence imaging. In addition, the presence of Gd3+ makes the NPs intrinsically monitorable by magnetic resonance imaging (MRI). Moreover, next to fluorescence and MR imaging, our results show that CaF2: Ce, Gd, Nd NPs can be used as imaging probes for photoacoustic imaging (PAI) in vitro. Therefore, due to their biocompatibility and suitability as multimodal imaging probes, CaF2: Ce, Gd, Nd NPs exhibit great potential as a traceable imaging agent in biomedical applications.

9.
Eur J Immunol ; 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563126

RESUMO

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.

10.
Front Genome Ed ; 4: 1030285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407494

RESUMO

Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.

11.
Mikrochim Acta ; 189(10): 368, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057018

RESUMO

Upconversion nanoparticles (UCNPs) represent a group of NPs that can convert near-infrared (NIR) light into ultraviolet and visible light, thus possess deep tissue penetration power with less background fluorescence noise interference, and do not induce damage to biological tissues. Due to their unique optical properties and possibility for surface modification, UCNPs can be exploited for concomitant antigen delivery into dendritic cells (DCs) and monitoring by molecular imaging. In this study, we focus on the development of a nano-delivery platform targeting DCs for immunotherapy and simultaneous imaging. OVA 254-267 (OVA24) peptide antigen, harboring a CD8 T cell epitope, and Pam3CysSerLys4 (Pam3CSK4) adjuvant were chemically linked to the surface of UCNPs by amide condensation to stimulate DC maturation and antigen presentation. The OVA24-Pam3CSK4-UCNPs were thoroughly characterized and showed a homogeneous morphology and surface electronegativity, which promoted a good dispersion of the NPs. In vitro experiments demonstrated that OVA24-Pam3CSK4-UCNPs induced a strong immune response, including DC maturation, T cell activation, and proliferation, as well as interferon gamma (IFN-γ) production. In vivo, highly sensitive upconversion luminescence (UCL) imaging of OVA24-Pam3CSK4-UCNPs allowed tracking of UCNPs from the periphery to lymph nodes. In summary, OVA24-Pam3CSK4-UCNPs represent an effective tool for DC-based immunotherapy.


Assuntos
Nanopartículas , Células Dendríticas , Luz , Luminescência , Imagem Molecular , Nanopartículas/química
12.
Biomedicines ; 10(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35625807

RESUMO

Triplet-triplet annihilation upconversion (TTA-UC) nanoparticles (NPs) have emerged as imaging probes and therapeutic probes in recent years due to their excellent optical properties. In contrast to lanthanide ion-doped inorganic materials, highly efficient TTA-UC can be generated by low excitation power density, which makes it suitable for clinical applications. In the present study, we used biodegradable poly(lactic-co-glycolic acid) (PLGA)-NPs as a delivery vehicle for TTA-UC based on the heavy metal porphyrin Platinum(II) octaethylporphyrin (PtOEP) and the polycyclic aromatic hydrocarbon 9,10-diphenylanthracene (DPA) as a photosensitizer/emitter pair. TTA-UC-PLGA-NPs were successfully synthesized according to an oil-in-water emulsion and solvent evaporation method. After physicochemical characterization, UC-efficacy of TTA-UC-PLGA-NPs was assessed in vitro and ex vivo. TTA-UC could be detected in the tumour area 96 h after in vivo administration of TTA-UC-PLGA-NPs, confirming the integrity and suitability of PLGA-NPs as a TTA-UC in vivo delivery system. Thus, this study provides proof-of-concept that the advantageous properties of PLGA can be combined with the unique optical properties of TTA-UC for the development of advanced nanocarriers for simultaneous in vivo molecular imaging and drug delivery.

13.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457057

RESUMO

Tumor growth and progression are linked to an altered lipid metabolism in the tumor microenvironment (TME), including tumor cells and tumor-associated macrophages (TAMs). A growing number of lipid metabolism targeting drugs have shown efficacy in anti-tumor therapy. In addition, exogenously applied lipids and lipid analogues have demonstrated anti-tumor activities in several cancers, including breast cancer. In this study, we investigated the anti-tumor efficacies of the natural lipids palmitic acid (PA), sphingomyelin (SM), ceramide (Cer) and docosahexaenoic acid (DHA) on breast cancer cells. All tested lipids reduced the malignancy of breast cancer cells in vitro by impairing cell proliferation, migration and invasiveness. PA showed superior anti-tumor properties, as it additionally impaired cancer cell viability by inducing apoptosis, without affecting healthy cells. Co-culture experiments further demonstrated that Cer and PA reduced the immunosuppressive phenotype of M2 macrophages and the M2 macrophage-promoted the epithelial-mesenchymal transition (EMT) and migration of breast cancer cells. At the molecular level, this coincided with the up-regulation of E-cadherin. Our results highlight a powerful role for exogenously applied PA and Cer in reducing breast cancer tumorigenicity by simultaneously targeting cancer cells and M2 macrophages. Our findings support the notion that lipids represent alternative biocompatible therapeutic agents for breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Ceramidas/metabolismo , Ceramidas/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Macrófagos/metabolismo , Ácido Palmítico/metabolismo , Microambiente Tumoral
14.
Pharmaceutics ; 14(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456674

RESUMO

Nowadays, cancer poses a significant hazard to humans. Limitations in early diagnosis techniques not only result in a waste of healthcare resources but can even lead to delays in diagnosis and treatment, consequently reducing cure rates. Therefore, it is crucial to develop an imaging probe that can provide diagnostic information precisely and rapidly. Here, we used a simple hydrothermal method to design a multimodal imaging probe based on the excellent properties of rare-earth ions. Calcium fluoride co-doped with ytterbium, gadolinium, and neodymium (CaF2:Y,Gd,Nd) nanoparticles (NPs) is highly crystalline, homogeneous in morphology, and displays a high biosafety profile. In addition, in vitro and ex vivo experiments explored the multimodal imaging capability of CaF2:Y,Gd,Nd and demonstrated the efficient performance of CaF2:Y,Gd,Nd during NIR-II fluorescence/photoacoustic/magnetic resonance imaging. Collectively, our novel diagnosis nanoparticle will generate new ideas for the development of multifunctional nanoplatforms for disease diagnosis and treatment.

15.
Pharmaceutics ; 13(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683963

RESUMO

The tumor microenvironment (TME) plays a central role in regulating antitumor immune responses. As an important part of the TME, alternatively activated type 2 (M2) macrophages drive the development of primary and secondary tumors by promoting tumor cell proliferation, tumor angiogenesis, extracellular matrix remodeling and overall immunosuppression. Immunotherapy approaches targeting tumor-associated macrophages (TAMs) in order to reduce the immunosuppressive state in the TME have received great attention. Although these methods hold great potential for the treatment of several cancers, they also face some limitations, such as the fast degradation rate of drugs and drug-induced cytotoxicity of organs and tissues. Nanomedicine formulations that prevent TAM signaling and recruitment to the TME or deplete M2 TAMs to reduce tumor growth and metastasis represent encouraging novel strategies in cancer therapy. They allow the specific delivery of antitumor drugs to the tumor area, thereby reducing side effects associated with systemic application. In this review, we give an overview of TAM biology and the current state of nanomedicines that target M2 macrophages in the course of cancer immunotherapy, with a specific focus on nanoparticles (NPs). We summarize how different types of NPs target M2 TAMs, and how the physicochemical properties of NPs (size, shape, charge and targeting ligands) influence NP uptake by TAMs in vitro and in vivo in the TME. Furthermore, we provide a comparative analysis of passive and active NP-based TAM-targeting strategies and discuss their therapeutic potential.

16.
Biomaterials ; 268: 120580, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321292

RESUMO

Ex vivo gene editing of CD34+ hematopoietic stem and progenitor cells (HSPCs) offers great opportunities to develop new treatments for a number of malignant and non-malignant diseases. Efficient gene-editing in HSPCs has been achieved using electroporation and/or viral transduction to deliver the CRISPR-complex, but cellular toxicity is a drawback of currently used methods. Nanoparticle (NP)-based gene-editing strategies can further enhance the gene-editing potential of HSPCs and provide a delivery system for in vivo application. Here, we developed CRISPR/Cas9-PLGA-NPs efficiently encapsulating Cas9 protein, single gRNA and a fluorescent probe. The initial 'burst' of Cas9 and gRNA release was followed by a sustained release pattern. CRISPR/Cas9-PLGA-NPs were taken up and processed by human HSPCs, without inducing cellular cytotoxicity. Upon escape from the lysosomal compartment, CRISPR/Cas9-PLGA-NPs-mediated gene editing of the γ-globin gene locus resulted in elevated expression of fetal hemoglobin (HbF) in primary erythroid cells. The development of CRISPR/Cas9-PLGA-NPs provides an attractive tool for the delivery of the CRISPR components to target HSPCs, and could provide the basis for in vivo treatment of hemoglobinopathies and other genetic diseases.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Nanopartículas , Sistemas CRISPR-Cas/genética , Células Eritroides , Edição de Genes , Humanos
17.
Front Chem ; 8: 496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656181

RESUMO

Fluorescence imaging in the second near infrared window (NIR-II, 1,000-1,700 nm) has been widely used in cancer diagnosis and treatment due to its high spatial resolution and deep tissue penetration depths. In this work, recent advances in rare-earth-doped nanoparticles (RENPs)-a novel kind of NIR-II nanoprobes-are presented. The main focus of this study is on the modification of RENPs and their applications in NIR-II in vitro and in vivo imaging and cancer theranostics. Finally, the perspectives and challenges of NIR-II RENPs are discussed.

18.
Mol Cell Biochem ; 469(1-2): 179-180, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32378077

RESUMO

The third and fifth author's affiliation was published incorrectly in the original article. Also, the Figure 5 and the Acknowledgement section was published incorrectly. The corrected affiliation, Figure 5 and the Acknowledgement section are provided in this correction.

19.
Mol Cell Biochem ; 468(1-2): 153-168, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32222879

RESUMO

Accumulating evidence indicates that ceramide (Cer) and palmitic acid (PA) possess the ability to modulate switching of macrophage phenotypes and possess anti-tumorigenic effects; however, the underlying molecular mechanisms are largely unknown. The aim of the present study was to investigate whether Cer and PA could induce switching of macrophage polarization from the tumorigenic M2- towards the pro-inflammatory M1-phenotype, and whether this consequently altered the potential of colorectal cancer cells to undergo epithelial-mesenchymal transition (EMT), a hallmark of tumor progression. Our study showed that Cer- and PA-treated macrophages increased expression of the macrophage 1 (M1)-marker CD68 and secretion of IL-12 and attenuated expression of the macrophage 2 (M2)-marker CD163 and IL-10 secretion. Moreover, Cer and PA abolished M2 macrophage-induced EMT and migration of colorectal cancer cells. At the molecular level, this coincided with inhibition of SNAI1 and vimentin expression and upregulation of E-cadherin. Furthermore, Cer and PA attenuated expression levels of IL-10 in colorectal cancer cells co-cultured with M2 macrophages and downregulated STAT3 and NF-κB expression. For the first time, our findings suggest the presence of an IL-10-STAT3-NF-κB signaling axis in colorectal cancer cells co-cultured with M2 macrophages, mimicking the tumor microenvironment. Importantly, PA and Cer were powerful inhibitors of this signaling axis and, consequently, EMT of colorectal cancer cells. These results contribute to our understanding of the immunological mechanisms that underlie the anti-tumorigenic effects of lipids for future combination with drugs in the therapy of colorectal carcinoma.


Assuntos
Ceramidas/farmacologia , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Macrófagos/metabolismo , Ácido Palmítico/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Interleucina-10/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Receptores de Superfície Celular/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
J Immunol ; 204(4): 747-751, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31924653

RESUMO

IL-6 binds to the IL-6R α-chain (IL-6Rα) and signals via the signal transducer gp130. Recently, IL-6 was found to also bind to the cell surface glycoprotein CD5, which would then engage gp130 in the absence of IL-6Rα. However, the biological relevance of this alternative pathway is under debate. In this study, we developed a mouse model, in which murine IL-6 is overexpressed in a CD11c-Cre-dependent manner. Transgenic mice developed a lethal immune dysregulation syndrome with increased numbers of Ly-6G+ neutrophils and Ly-6Chi monocytes/macrophages. IL-6 overexpression promoted activation of CD4+ T cells while suppressing CD5+ B-1a cell development. However, additional ablation of IL-6Rα protected IL-6-overexpressing mice from IL-6-triggered inflammation and fully phenocopied IL-6Rα-deficient mice without IL-6 overexpression. Mechanistically, IL-6Rα deficiency completely prevented downstream activation of STAT3 in response to IL-6. Altogether, our data clarify that IL-6Rα is the only biologically relevant receptor for IL-6 in mice.


Assuntos
Interleucina-6/imunologia , Receptores de Interleucina-6/imunologia , Transdução de Sinais/imunologia , Animais , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...