Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(24): 7472-7, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26034279

RESUMO

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.


Assuntos
Biodiversidade , Florestas , Árvores , Clima Tropical , Conservação dos Recursos Naturais , Bases de Dados Factuais , Ecossistema , Filogeografia , Floresta Úmida , Especificidade da Espécie , Estatísticas não Paramétricas , Árvores/classificação
2.
Proc Natl Acad Sci U S A ; 108(30): 12343-7, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21746913

RESUMO

The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.


Assuntos
Ecossistema , Árvores , Sudeste Asiático , Conservação dos Recursos Naturais , Humanos , Modelos Biológicos , Filogeografia , Dinâmica Populacional , Solo , Clima Tropical
3.
Oecologia ; 164(3): 841-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20811911

RESUMO

Tree species rarely exposed to burning, like in everwet tropical forests, are unlikely to be fire adapted. Therefore, one could hypothesize that these species are affected equally by burning and that tree abundance changes are linked solely to fire behavior. Alternatively, if species do react differentially to burning, abundance changes should be linked to tree habitat preference and morphology. Using tree inventories from old-growth and adjacent burned Bornean forest in combination with a database on tree morphology and habitat preference, we test these alternative hypotheses by (1) determining whether species specific abundance changes after fire differ significantly from equal change, and (2) whether observed abundance changes are linked to species morphology and habitat preference. We found that of 196 species tested, 125 species showed an abundance change significantly different from that expected under our null model of equal change. These abundance changes were significantly linked to both tree morphology and habitat preference. Abundance declines were associated with slope or ridge preference, thin barks, and limited seed dormancy. Abundance increases were associated with high light preference, small adult stature, light wood, large leaves, small seeds and long seed dormancy. While species habitat preference and morphology explained observed abundance increases well, abundance declines were only weakly associated with them (R(2) ~ 0.09). This suggests that most tree mortality was random and everwet tropical tree species are poorly fire adapted. As fire frequencies are increasing in the everwet tropics, this might eventually result in permanently altered species compositions and even species extinctions.


Assuntos
Incêndios , Árvores/fisiologia , Clima Tropical , Adaptação Fisiológica , Bornéu , Ecossistema , Extinção Biológica , Filogenia , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento
4.
Oecologia ; 158(3): 579-88, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18839212

RESUMO

Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.


Assuntos
Ecossistema , Incêndios , Árvores , Clima Tropical , Biodiversidade , Bornéu
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...