Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Methods Mol Biol ; 2758: 199-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549015

RESUMO

Peptides have broad biological significance among different species. Intracellular peptides are considered a particular class of bioactive peptides, whose generation is initiated by proteasomal degradation of cytosolic, nuclear, or mitochondrial proteins. To extract and purify intracellular peptides, which may apply for biological peptides in general, it is important to consider the initial source: tissue, cell, or fluid. First, it is important to proceed fast with inactivation of proteases and/or peptidases commonly present in the biological source of peptides, which might rapidly degrade peptides during the initial process of extraction. The incubation of biological tissues, cells, and fluids at 80 °C for up to 20 min have been sufficient to fully inactivate proteases or peptidases activities. It is particularly important not to acidify the samples at high temperature, because it can lead to nonspecific hydrolysis reactions; particularly, the Asp-Pro peptide bond can be cleaved at acidic environments and elevated temperatures. Unfortunately, not every sample can have proteinases and peptidases denatured by heating the biological source of intracellular peptides. Plasma, for example, when heated at temperatures higher than 55 °C can clot and trap peptides within the fibrin net. Therefore, alternative conditions for inactivating proteinases and peptidases must apply for plasma samples. In this chapter, the most successful methods used in our laboratory to extract intracellular peptides are described.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases , Hidrólise , Proteômica
2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894869

RESUMO

Neurolysin oligopeptidase (E.C.3.4.24.16; Nln), a member of the zinc metallopeptidase M3 family, was first identified in rat brain synaptic membranes hydrolyzing neurotensin at the Pro-Tyr peptide bond. The previous development of C57BL6/N mice with suppression of Nln gene expression (Nln-/-), demonstrated the biological relevance of this oligopeptidase for insulin signaling and glucose uptake. Here, several metabolic parameters were investigated in Nln-/- and wild-type C57BL6/N animals (WT; n = 5-8), male and female, fed either a standard (SD) or a hypercaloric diet (HD), for seven weeks. Higher food intake and body mass gain was observed for Nln-/- animals fed HD, compared to both male and female WT control animals fed HD. Leptin gene expression was higher in Nln-/- male and female animals fed HD, compared to WT controls. Both WT and Nln-/- females fed HD showed similar gene expression increase of dipeptidyl peptidase 4 (DPP4), a peptidase related to glucagon-like peptide-1 (GLP-1) metabolism. The present data suggest that Nln participates in the physiological mechanisms related to diet-induced obesity. Further studies will be necessary to better understand the molecular mechanism responsible for the higher body mass gain observed in Nln-/- animals fed HD.


Assuntos
Dieta , Obesidade , Ratos , Camundongos , Animais , Masculino , Feminino , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Dieta/efeitos adversos , Metaloendopeptidases/genética
3.
iScience ; 26(9): 107542, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636076

RESUMO

Intracellular peptides (InPeps) generated by the orchestrated action of the proteasome and intracellular peptidases have biological and pharmacological significance. Here, human plasma relative concentration of specific InPeps was compared between 175 patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients; 2,466 unique peptides were identified, of which 67% were InPeps. The results revealed differences of a specific group of peptides in human plasma comparing non-infected individuals to patients infected by SARS-CoV-2, following the results of the semi-quantitative analyses by isotope-labeled electrospray mass spectrometry. The protein-protein interactions networks enriched pathways, drawn by genes encoding the proteins from which the peptides originated, revealed the presence of the coronavirus disease/COVID-19 network solely in the group of patients fatally infected by SARS-CoV-2. Thus, modulation of the relative plasma levels of specific InPeps could be employed as a predictive tool for disease outcome.

4.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159195

RESUMO

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Assuntos
Sirolimo , Proteína 1A de Ligação a Tacrolimo , Animais , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Peptídeos/farmacologia , Sirolimo/farmacologia , Tacrolimo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
5.
Pharmaceutics ; 13(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34959456

RESUMO

Intracellular peptides were shown to derive from proteasomal degradation of proteins from mammalian and yeast cells, being suggested to play distinctive roles both inside and outside these cells. Here, the role of intracellular peptides previously identified from skeletal muscle and adipose tissues of C57BL6/N wild type (WT) and neurolysin knockout mice were investigated. In differentiated C2C12 mouse skeletal muscle cells, some of these intracellular peptides like insulin activated the expression of several genes related to muscle contraction and gluconeogenesis. One of these peptides, LASVSTVLTSKYR (Ric4; 600 µg/kg), administrated either intraperitoneally or orally in WT mice, decreased glycemia. Neither insulin (10 nM) nor Ric4 (100 µM) induced glucose uptake in adipose tissue explants obtained from conditional knockout mice depleted of insulin receptor. Ric4 (100 µM) similarly to insulin (100 nM) induced Glut4 translocation to the plasma membrane of C2C12 differentiated cells, and increased GLUT4 mRNA levels in epididymal adipose tissue of WT mice. Ric4 (100 µM) increased both Erk and Akt phosphorylation in C2C12, as well as in epididymal adipose tissue from WT mice; Erk, but not Akt phosphorylation was activated by Ric4 in tibial skeletal muscle from WT mice. Ric4 is rapidly degraded in vitro by WT liver and kidney crude extracts, such a response that is largely reduced by structural modifications such as N-terminal acetylation, C-terminal amidation, and substitution of Leu8 for DLeu8 (Ac-LASVSTV[DLeu]TSKYR-NH2; Ric4-16). Ric4-16, among several Ric4 derivatives, efficiently induced glucose uptake in differentiated C2C12 cells. Among six Ric4-derivatives evaluated in vivo, Ac-LASVSTVLTSKYR-NH2 (Ric4-2; 600 µg/kg) and Ac-LASVSTV[DLeu]TSKYR (Ric4-15; 600 µg/kg) administrated orally efficiently reduced glycemia in a glucose tolerance test in WT mice. The potential clinical application of Ric4 and Ric4-derivatives deserves further attention.

6.
Biomolecules ; 10(2)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079362

RESUMO

Thimet oligopeptidase (EC 3.4.24.15; EP24.15; THOP1) is a potential therapeutic target, as it plays key biological functions in processing biologically functional peptides. The structural conformation of THOP1 provides a unique restriction regarding substrate size, in that it only hydrolyzes peptides (optimally, those ranging from eight to 12 amino acids) and not proteins. The proteasome activity of hydrolyzing proteins releases a large number of intracellular peptides, providing THOP1 substrates within cells. The present study aimed to investigate the possible function of THOP1 in the development of diet-induced obesity (DIO) and insulin resistance by utilizing a murine model of hyperlipidic DIO with both C57BL6 wild-type (WT) and THOP1 null (THOP1-/-) mice. After 24 weeks of being fed a hyperlipidic diet (HD), THOP1-/- and WT mice ingested similar chow and calories; however, the THOP1-/- mice gained 75% less body weight and showed neither insulin resistance nor non-alcoholic fatty liver steatosis when compared to WT mice. THOP1-/- mice had increased adrenergic-stimulated adipose tissue lipolysis as well as a balanced level of expression of genes and microRNAs associated with energy metabolism, adipogenesis, or inflammation. Altogether, these differences converge to a healthy phenotype of THOP1-/- fed a HD. The molecular mechanism that links THOP1 to energy metabolism is suggested herein to involve intracellular peptides, of which the relative levels were identified to change in the adipose tissue of WT and THOP1-/- mice. Intracellular peptides were observed by molecular modeling to interact with both pre-miR-143 and pre-miR-222, suggesting a possible novel regulatory mechanism for gene expression. Therefore, we successfully demonstrated the previously unanticipated relevance of THOP1 in energy metabolism regulation. It was suggested that intracellular peptides were responsible for mediating the phenotypic differences that are described herein by a yet unknown mechanism of action.


Assuntos
Metabolismo Energético , Metaloendopeptidases/metabolismo , Obesidade/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Deleção de Genes , Resistência à Insulina , Lipólise , Masculino , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética
7.
Biomolecules ; 9(8)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31431000

RESUMO

Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.


Assuntos
Metaloendopeptidases/metabolismo , Animais , Comportamento Animal , Feminino , Masculino , Metaloendopeptidases/deficiência , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
8.
Biomolecules ; 9(8): 382, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17201

RESUMO

Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.

9.
Biomolecules, v. 9, n. 8, p. 382, aug. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2839

RESUMO

Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.

10.
Sci Rep ; 7(1): 14781, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093454

RESUMO

Intracellular peptides generated by limited proteolysis are likely to function inside and outside cells and could represent new possibilities for drug development. Here, we used several conformational-sensitive antibodies targeting G-protein coupled receptors to screen for novel pharmacological active peptides. We find that one of these peptides, DITADDEPLT activates cannabinoid type 1 receptors. Single amino acid modifications identified a novel peptide, DIIADDEPLT (Pep19), with slightly better inverse agonist activity at cannabinoid type 1 receptors. Pep19 induced uncoupling protein 1 expression in both white adipose tissue and 3T3-L1 differentiated adipocytes; in the latter, Pep19 activates pERK1/2 and AKT signaling pathways. Uncoupling protein 1 expression induced by Pep19 in 3T3-L1 differentiated adipocytes is blocked by AM251, a cannabinoid type 1 receptors antagonist. Oral administration of Pep19 into diet-induced obese Wistar rats significantly reduces adiposity index, whole body weight, glucose, triacylglycerol, cholesterol and blood pressure, without altering heart rate; changes in the number and size of adipocytes were also observed. Pep19 has no central nervous system effects as suggested by the lack of brain c-Fos expression, cell toxicity, induction of the cannabinoid tetrad, depressive- and anxiety-like behaviors. Therefore, Pep19 has several advantages over previously identified peripherally active cannabinoid compounds, and could have clinical applications.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Obesidade/tratamento farmacológico , Peptídeos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo Branco/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Peptídeos/química , Peptídeos/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...