Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hosp Infect ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830540

RESUMO

BACKGROUND: Prevention of toilet-to-patient transmission of multidrug-resistant Pseudomonas aeruginosa (MDR PA) poses management-related challenges at many bone marrow transplant units (BMTU). Using whole-genome sequencing (WGS), we conducted a longitudinal retrospective analysis of the toilet-to-patient transmission rate for MDR PA under existing infection control (IC) measures at a BMTU with persistent MDR PA toilet colonization. METHODS: The local IC bundle comprised 1.) patient education regarding IC, 2.) routine patient screening, 3.) toilet flushing volume of 9L, 4.) bromination of toilet water tanks, and 5.) toilet decontamination using hydrogen peroxide. Toilet water was sampled periodically between 2016-2021 (minimum every three months - 26 intervals). Upon MDR PA detection, disinfection and re-sampling were repeated until ≤ 3 cfu/100ml was reached. WGS was performed retrospectively on all available MDR PA isolates (90 of 117 positive environmental samples, 10 of 14 patients - including nine nosocomial). RESULTS: WGS of patient isolates identified six sequence types (STs), with ST235/CT1352/FIM-1 and ST309/CT3049/no-carbapenemase being predominant (three isolates each). Environmental sampling consistently identified MDR PA ST235 (65.5% ST235/CT1352/FIM-1), showing low genetic diversity (difference of ≤29 alleles by cgMLST). This indicates that direct toilet-to-patient transmission was infrequent although MDR PA was widespread (detection on 79 occasions, detection in every toilet). Only three MDR PA patient isolates can be attributed to the ST235/CT1352/FIM-1 toilet MRD PA population over six years. CONCLUSIONS: Genome-oriented environmental and patient surveillance suggests that the persistent presence of MDR PA poses a potential risk for acquisition, but with stringent targeted toilet disinfection, only three highly vulnerable patients experienced nosocomial transmission.

2.
Antimicrob Resist Infect Control ; 13(1): 20, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355509

RESUMO

BACKGROUND: In most of Europe and especially in Germany, there is currently a concerning rise in the number of hospital-acquired infections due to vancomycin-resistant Enterococcus faecium (VREfm). Therefore, there is a need to improve our understanding of the way VREfm spreads in hospitals. In this study, we investigated the molecular epidemiology of VREfm isolates from the first appearance at our university hospital in 2004 until 2010. There is only very scarce information about the molecular epidemiology of VREfm from this early time in Germany. METHODS: Our analysis includes all available first VREfm isolates of each patient at our tertiary care center collected during the years 2004-2010. If available, additional consecutive VREfm isolates from some patients were analyzed. We used multilocus sequence typing (MLST) and core genome multilocus sequence typing (cgMLST) for the analysis and description of nosocomial transmission pathways as well as the detection of outbreaks. RESULTS: VREfm isolates from 158 patients and 76 additional subsequent patient isolates were included in the analysis. Until 2006, detections of VREfm remained singular cases, followed by a peak in the number of VREfm cases in 2007 and 2008 with a subsequent decline to baseline in 2010. MLST and cgMLST analysis show significant changes in the dominant sequence types (STs) and complex types (CTs) over the study period, with ST192 and ST17 being responsible for the peak in VREfm cases in 2007 and 2008. The four largest clusters detected during the study period are comprised of these two STs. Cluster analysis shows a focus on specific wards and departments for each cluster. In the early years of this study (2004-2006), all analyzed VREfm stemmed from clinical specimens, whereas since 2007, approximately half of the VREfm were detected by screening. Of the 234 VREfm isolates analyzed, 96% had a vanB and only 4% had a vanA resistance genotype. CONCLUSIONS: This retrospective study contributes significant knowledge about regional VREfm epidemiology from this early VREfm period in Germany. One remarkable finding is the striking dominance of vanB-positive VREfm isolates over the entire study period, which is in contrast with countrywide data. Analysis of cgMLST shows the transition from sporadic VRE cases at our institution to a sharp increase in VRE numbers triggered by oligoclonal spread and specific outbreak clusters with the dominance of ST192 and ST17.


Assuntos
Enterococcus faecium , Enterococos Resistentes à Vancomicina , Humanos , Vancomicina , Estudos Retrospectivos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Enterococcus faecium/genética , Centros de Atenção Terciária , Atenção Terciária à Saúde , Enterococos Resistentes à Vancomicina/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-37052767

RESUMO

BACKGROUND: The colonization of skin with pathogenic, partially antibiotic-resistant bacteria is frequently a severe problem in dermatological therapies. For instance, skin colonization with Staphylococcus aureus is even a disease-promoting factor in atopic dermatitis. The photodynamic inactivation (PDI) of bacteria could be a new antibacterial procedure. Upon irradiation with visible light, a special photosensitizer exclusively generates singlet oxygen. This reactive oxygen species kills bacteria via oxidation independent of species or strain and their antibiotic resistance profile causing no bacterial resistance on its part. OBJECTIVE: To investigate the antibacterial potential of a photosensitizer, formulated in a new hydrogel, on human skin ex vivo. METHODS: The photochemical stability of the photosensitizer and its ability to generate singlet oxygen in the hydrogel was studied. Antimicrobial efficacy of this hydrogel was tested step by step, firstly on inanimate surfaces and then on human skin ex vivo against S. aureus and Pseudomonas aeruginosa using standard colony counting. NBTC staining and TUNEL assays were performed on skin biopsies to investigate potential necrosis and apoptosis effects in skin cells possibly caused by PDI. RESULTS: None of the hydrogel components affected the photochemical stability and the life time of singlet oxygen. On inanimate surfaces as well as on the human skin, the number of viable bacteria was reduced by up to 4.8 log10 being more effective than most other antibacterial topical agents. Histology and assays showed that PDI against bacteria on the skin surface caused no harmful effects on the underlying skin cells. CONCLUSION: Photodynamic inactivation hydrogel proved to be effective for decolonization of human skin including the potential to act against superficial skin infections. Being a water-based formulation, the hydrogel should be also suitable for the mucosa. The results of the present ex vivo study form a good basis for conducting clinical studies in vivo.

4.
Food Microbiol ; 110: 104174, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36462830

RESUMO

The photodynamic inactivation (PDI) uses molecules (photosensitizers) that absorb visible light (385-450 nm) energy, transfer it to adjacent molecular oxygen and thereby generating the biocidal singlet oxygen and other reactive oxygen species in situ. Efficacy of PDI was tested against Listeria monocytogenes and Salmonella enterica in three ways. Firstly, by adding the photosensitizer to bacterial suspensions. Secondly, bacteria were placed on inanimate surfaces and then sprayed with a photosensitizer suspension. Thirdly, bacteria were placed on coated inanimate surfaces, where the photosensitizer was permanently fixed in this coating (antimicrobial coating, AMC). Experiments were performed without and with soiling (albumin, sheep erythrocytes). In suspension, PDI reduced the number of viable Listeria monocytogenes and Salmonella enterica by more than 6 Log CFU/mL within seconds of light exposure. Photosensitizer spray suspension reduced the bacterial burden on surfaces with up to about 6 Log CFU/mL (5 s light exposure). PDI, even in the presence of high soiling, achieved a reduction of up to 5.1 ± 1.2 Log CFU/mL. The AMC showed a bacterial reduction that decreased from 5.1 to 0.7 Log CFU/mL with increasing soiling. Depending on the soiling and the respective bacteria, the spray suspension or AMC achieved a bacterial reduction on the running conveyor belt demonstrator ranging from 2.9 to 5.3 or 0.5 to 4.5 Log CFU/mL, respectively. PDI used visible light, phenalene-1-one and curcumin photosensitizers, and oxygen from ambient air to reduce the bioburden on typical surfaces in food processing. The AMC acts slower than the spray suspension but enables a permanent, self-sanitizing effect.


Assuntos
Listeria monocytogenes , Salmonella enterica , Animais , Ovinos , Aço Inoxidável , Poliuretanos , Fármacos Fotossensibilizantes/farmacologia , Oxigênio
5.
Photochem Photobiol ; 99(2): 716-731, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36004389

RESUMO

Many studies show that photodynamic inactivation (PDI) is a powerful tool for the fight against pathogenic, multiresistant bacteria and the closing of hygiene gaps. However, PDI studies have been frequently performed under standardized in vitro conditions comprising artificial laboratory settings. Under real-life conditions, however, PDI encounters substances like ions, proteins, amino acids and fatty acids, potentially hampering the efficacy of PDI to an unpredictable extent. Thus, we investigated PDI with the phenalene-1-one-based photosensitizer SAPYR against Escherichia coli and Staphylococcus aureus in the presence of calcium or magnesium ions, which are ubiquitous in potential fields of PDI applications like in tap water or on tissue surfaces. The addition of citrate should elucidate the potential as a chelator. The results indicate that PDI is clearly affected by such ubiquitous ions depending on its concentration and the type of bacteria. The application of citrate enhanced PDI, especially for Gram-negative bacteria at certain ionic concentrations (e.g. CaCl2 or MgCl2 : 7.5 to 75 mmol L-1 ). Citrate also improved PDI efficacy in tap water (especially for Gram-negative bacteria) and synthetic sweat solution (especially for Gram-positive bacteria). In conclusion, the use of chelating agents like citrate may facilitate the application of PDI under real-life conditions.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Ácido Cítrico/farmacologia , Quelantes/farmacologia , Staphylococcus aureus , Citratos/farmacologia , Água , Fotoquimioterapia/métodos
6.
PLoS One ; 16(6): e0253212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34115813

RESUMO

Photodynamic inactivation (PDI) of pathogenic bacteria is a promising technology in different applications. Thereby, a photosensitizer (PS) absorbs visible light and transfers the energy to oxygen yielding reactive oxygen species (ROS). The produced ROS are then capable of killing microorganisms via oxidative damage of cellular constituents. Among other PS, some flavins are capable of producing ROS and cationic flavins are already successfully applied in PDI. When PDI is used for example on tap water, PS like flavins will encounter various ions and other small organic molecules which might hamper the efficacy of PDI. Thus, the impact of carbonate and phosphate ions on PDI using two different cationic flavins (FLASH-02a, FLASH-06a) was investigated using Staphylococcus aureus and Pseudomonas aeruginosa as model organisms. Both were inactivated in vitro at a low light exposure of 0.72 J cm-2. Upon irradiation, FLASH-02a reacts to single substances in the presence of carbonate or phosphate, whereas the photochemical reaction for FLASH-06a was more unspecific. DPBF-assays indicated that carbonate and phosphate ions decreased the generation of singlet oxygen of both flavins. Both microorganisms could be easily inactivated by at least one PS with up to 6 log10 steps of cell counts in low ion concentrations. Using the constant radiation exposure of 0.72 J cm-2, the inactivation efficacy decreased somewhat at medium ion concentrations but reached almost zero for high ion concentrations. Depending on the application of PDI, the presence of carbonate and phosphate ions is unavoidable. Only upon light irradiation such ions may attack the PS molecule and reduce the efficacy of PDI. Our results indicate concentrations for carbonate and phosphate, in which PDI can still lead to efficient reduction of bacterial cells when using flavin based PS.


Assuntos
Carbonatos/metabolismo , Flavinas/uso terapêutico , Fosfatos/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Flavinas/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral
7.
Photochem Photobiol ; 94(1): 165-172, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28940456

RESUMO

Photodynamic inactivation of bacteria (PIB) is based on photosensitizers which absorb light and generate reactive oxygen species (ROS), killing cells via oxidation. PIB is evaluated by comparing viability with and without irradiation, where reduction of viability in the presence of the photosensitizer without irradiation is considered as dark toxicity. This effect is controversially discussed for photosensitizers like TMPyP (5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluensulfonate). TMPyP shows a high absorption coefficient for blue light and a high yield of ROS production, especially singlet oxygen. Escherichia coli and Bacillus atrophaeus were incubated with TMPyP and irradiated with different light sources at low radiant exposures (µW per cm²), reflecting laboratory conditions of dark toxicity evaluation. Inactivation of E. coli occurs for blue light, while no effect was detectable for wavelengths >450 nm. Being more susceptible toward PIB, growth of B. atrophaeus is even reduced for light with emission >450 nm. Decreasing the light intensities to nW per cm² for B. atrophaeus, application of TMPyP still caused bacterial killing. Toxic effects of TMPyP disappeared after addition of histidine, quenching residual ROS. Our experiments demonstrate that the evaluation of dark toxicity of a powerful photosensitizer like TMPyP requires low light intensities and if necessary additional application of substances quenching any residual ROS.


Assuntos
Bacillus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Bacillus/efeitos da radiação , Escuridão , Escherichia coli/efeitos da radiação , Histidina/administração & dosagem , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo , Fatores de Tempo
8.
Photochem Photobiol Sci ; 14(2): 387-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25423452

RESUMO

Highly resistant endospores may cause severe problems in medicine as well as in the food and packaging industries. We found that bacterial endospores can be inactivated quickly with reactive oxygen species (ROS) that were generated by a new generation of flavin photosensitizers. Flavins like the natural compound vitamin B2 are already known to produce ROS but they show a poor antimicrobial photodynamic killing efficacy due to the lack of positive charges. Therefore we synthesized new flavin photosensitizers that have one (FLASH-01a) or eight (FLASH-07a) positive charges and can hence attach to the negatively charged surface of endospores. In this study we used standardized Bacillus atrophaeus endospores (ATCC 9372) as a biological surrogate model for a proof-of-concept study of photodynamic inactivation experiments using FLASH-01a and FLASH-07a. After incubation of spores with different flavin concentrations, the flavin derivatives were excited with blue light at a light dose of 70 J cm(-2). The inactivation of spores was investigated either in suspension or after attachment to polyethylene terephthalate (PET) surfaces. Incubation of spores suspended in Millipore water with 4 mM FLASH-01a for 10 seconds and irradiation with blue light for 10 seconds caused a biologically relevant decrease of spore survival of 3.5 log10 orders. Using FLASH-07a under the same conditions we achieved a decrease of 4.4 log10 orders. Immobilized spores on PET surfaces were efficiently killed with 7.0 log10 orders using 8 mM FLASH-07a. The total treatment time (incubation + irradiation) was as short as 20 seconds. The results of this study show evidence that endospores can be fastly and effectively inactivated with new generations of flavin photosensitizers that may be useful for industrial or medical applications in the future.


Assuntos
Bacillus/efeitos dos fármacos , Bacillus/fisiologia , Flavinas/farmacologia , Luz , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/análogos & derivados , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bacillus/efeitos da radiação , Bacillus/ultraestrutura , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Flavinas/síntese química , Flavinas/química , Humanos , Microscopia Eletrônica de Transmissão , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Polietilenotereftalatos/química , Oxigênio Singlete/química , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/efeitos da radiação , Esporos Bacterianos/ultraestrutura , Água/química
9.
PLoS One ; 9(12): e111792, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25469700

RESUMO

Photodynamic inactivation of bacteria (PIB) proves to be an additional method to kill pathogenic bacteria. PIB requires photosensitizer molecules that effectively generate reactive oxygen species like singlet oxygen when exposed to visible light. To allow a broad application in medicine, photosensitizers should be safe when applied in humans. Substances like vitamin B2, which are most likely safe, are known to produce singlet oxygen upon irradiation. In the present study, we added positive charges to flavin derivatives to enable attachment of these molecules to the negatively charged surface of bacteria. Two of the synthesized flavin derivatives showed a high quantum yield of singlet oxygen of approximately 75%. Multidrug resistant bacteria like MRSA (Methicillin resistant Staphylococcus aureus), EHEC (enterohemorrhagic Escherichia coli), Pseudomonas aeruginosa, and Acinetobacter baumannii were incubated with these flavin derivatives in vitro and were subsequently irradiated with visible light for seconds only. Singlet oxygen production in bacteria was proved by detecting its luminescence at 1270 nm. After irradiation, the number of viable bacteria decreased up to 6 log10 steps depending on the concentration of the flavin derivatives and the light dosimetry. The bactericidal effect of PIB was independent of the bacterial type and the corresponding antibiotic resistance pattern. In contrast, the photosensitizer concentration and light parameters used for bacteria killing did not affect cell viability of human keratinocytes (therapeutic window). Multiresistant bacteria can be safely and effectively killed by a combination of modified vitamin B2 molecules, oxygen and visible light, whereas normal skin cells survive. Further work will include these new photosensitizers for topical application to decolonize bacteria from skin and mucosa.


Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/análogos & derivados , Oxigênio Singlete/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/efeitos da radiação , Infecções Bacterianas/terapia , Linhagem Celular , Farmacorresistência Bacteriana Múltipla/efeitos da radiação , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/efeitos da radiação , Humanos , Queratinócitos/microbiologia , Luz , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos da radiação , Riboflavina/síntese química , Riboflavina/farmacologia
10.
Int J Med Microbiol ; 304(8): 1050-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25130702

RESUMO

Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistence in the inflamed and ever fluctuating CF lungs results in the selection of a variety of changes in P. aeruginosa physiology. Accumulating evidence suggests that especially metabolic changes support the survival and growth of P. aeruginosa within the hypoxic and nutritious CF mucus. To investigate if metabolic adaptations we described for hypermutable P. aeruginosa from late CF lung disease (Hoboth et al., 2009. J. Infect. Dis., pp. 118-130) may represent specific changes in response to the selective conditions within the oxygen-restricted CF mucus, we determined the expression of a set of genes during aerobic and hypoxic growth in LB and the artificial sputum medium ASM. We further focused on the regulation of the two isocitrate dehydrogenases Icd and Idh. Interestingly, both isoenzymes may replace each other under aerobic and hypoxic conditions. The NADPH- and RpoS-dependent Icd seems to be the leading isoenzyme under prolonged oxygen limitation and stationary growth phase. LacZ reporter analysis revealed that oxygen-restriction increased the expression levels of azu, cbb3-1, cbb3-2, ccpR, icd, idh and oprF gene, whereas himD and nuoA are increasingly expressed only during hypoxic growth in ASM. Overexpression of the anaerobic regulator Anr improved the expression of azu, ccpR, cbb3-2 and icd. In summary, expression of azu, cbb3-1, cbb3-2, ccpR, icd, idh, oprF, himD, and nuoA appeared to be beneficial for the growth of P. aeruginosa under hypoxic conditions indicating these genes may represent marker genes for the metabolic adaptation to the CF lung environment.


Assuntos
Adaptação Biológica , Fibrose Cística/complicações , Marcadores Genéticos , Hipóxia/complicações , Redes e Vias Metabólicas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Fibrose Cística/patologia , Expressão Gênica , Humanos , Isocitrato Desidrogenase/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Infecções Respiratórias/microbiologia
11.
Photochem Photobiol Sci ; 12(1): 135-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22855122

RESUMO

Hand hygiene is one of the most important interventions for reducing transmission of nosocomial life-threatening microorganisms, like methicillin resistant Staphylococcus aureus (MRSA), enterohemorrhagic Escherichia coli (EHEC) or Candida albicans. All three pathogens have become a leading cause of infections in hospitals. Especially EHEC is causing severe diarrhoea and, in a small percentage of cases, haemolytic-uremic syndrome (HUS) as reported for E. coli 104:H4 in Germany 2011. We revealed the possibility to inactivate very fast and efficiently MRSA, EHEC and C. albicans using the photodynamic approach. MRSA, EHEC and C. albicans were incubated in vitro with different concentrations of TMPyP for 10 s and illuminated with visible light (50 mW cm(-2)) for 10 and 60 s. 1 µmol l(-1) of TMPyP and an applied radiant exposure of 0.5 J cm(-2) achieved a photodynamic killing of ≥99.9% of MRSA and EHEC. Incubation with higher concentrations (up to 100 µmol l(-1)) of TMPyP caused bacteria killing of >5 log(10) (≥99.999%) after illumination. Efficient Candida killing (≥99.999%) was achieved first at a higher light dose of 12 J cm(-2). Different rise and decay times of singlet oxygen luminescence signals could be detected in Candida cell suspensions for the first time, indicating different oxygen concentrations in the surrounding for the photosensitizer and singlet oxygen, respectively. This confirms that TMPyP is not only found in the water-dominated cell surrounding, but also within the C. albicans cells. Applying a water-ethanol solution of TMPyP on ex vivo porcine skin, fluorescence microscopy of histology showed that the photosensitizer was exclusively localized in the stratum corneum regardless of the incubation time. TMPyP exhibited a fast and very effective killing rate of life-threatening pathogens within a couple of seconds that encourages further testing in an in vivo setting. Being fast and effective, antimicrobial photodynamic applications might become acceptable as a tool for hand hygiene procedures and also in other skin areas.


Assuntos
Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/efeitos da radiação , Humanos , Luz , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/toxicidade , Porfirinas/toxicidade , Oxigênio Singlete/metabolismo , Pele/química , Pele/patologia , Staphylococcus aureus/efeitos da radiação , Suínos
12.
J Infect Dis ; 200(1): 118-30, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19459782

RESUMO

BACKGROUND: In patients with cystic fibrosis (CF), the emergence of hypermutable Pseudomonas aeruginosa drives the selection of P. aeruginosa variants that are efficiently adapted to the inflamed lungs of these patients. OBJECTIVE: To provide a detailed survey of adaptive changes in the physiology of P. aeruginosa during chronic lung infection in patients with CF. METHODS: We performed a comparative proteome and transcriptome analysis of sequential, isogenic isolates recovered over a period of 3-5 years from 3 selected patients with CF. The isolates analyzed included both those with high mutation rates and defects in their methyl-directed mismatch repair system (hereafter, "mutators") and those without such changes (hereafter, "nonmutators"). RESULTS: In addition to attenuation of virulence, the P. aeruginosa adaptation process predominantly affects metabolic pathways. In mutator isolates recovered from patients with end-stage CF lung disease, we observed increases in the transcripts of genes or proteins involved in the metabolism of fatty acids and amino acids and the generation of energy. Of particular interest is the increased expression of genes involved in the following pathways and processes: (1) the anaerobic arginine-deiminase pathway, (2) anaerobic respiration (e.g., nitrate-uptake protein OprF, azurin, and cytochrome c551 peroxidase), (3) microaerobic respiration (e.g., cytochrome oxidase cbb3), and (4) the tricarboxylic acid cycle and glyoxylate shunt. Strikingly, increased transcription of the anaerobic regulator gene anr correlates with the up-regulation of ANR-dependent genes. CONCLUSIONS: These changes indicate an adaptive shift toward constitutive expression of genes required for growth under the nutritional and microaerobic conditions created by suppurative secretions in the lungs of patients with CF. In addition, these results provide important clues about the persistence strategies used by P. aeruginosa during progressive CF lung disease.


Assuntos
Fibrose Cística/complicações , Pneumopatias/microbiologia , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Aerobiose , Anaerobiose , Proteínas de Bactérias/genética , Doença Crônica , Fibrose Cística/microbiologia , Evolução Molecular , Perfilação da Expressão Gênica , Humanos , Fenótipo , Proteoma , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...