Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(23): 6350-6353, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258809

RESUMO

We present a carrier-envelope offset (CEO) stable ytterbium-doped fiber chirped-pulse amplification system employing the technology of coherent beam combining and delivering more than 1 kW of average power at a pulse repetition rate of 80 MHz. The CEO stability of the system is 220 mrad rms, characterized out-of-loop with an f-to-2f interferometer in a frequency offset range of 10 Hz to 20 MHz. The high-power amplification system boosts the average power of the CEO stable oscillator by five orders of magnitude while increasing the phase noise by only 100 mrad. No evidence of CEO noise deterioration due to coherent beam combining is found. Low-frequency CEO fluctuations at the chirped-pulse amplifier are suppressed by a "slow loop" feedback. To the best of our knowledge, this is the first demonstration of a coherently combined laser system delivering an outstanding average power and high CEO stability at the same time.

2.
Opt Express ; 24(8): 7893-904, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137231

RESUMO

Actively stabilized, simultaneous spatial and temporal coherent beam combination is a promising power-scaling technique for ultrafast laser systems. For a temporal combination based on optical delay lines, multiple stable states of operation arise for common stabilization techniques. A time resolved Jones' calculus is applied to investigate the issue. A mitigation strategy based on a temporally gated error signal acquisition is derived and demonstrated, enabling to stabilize laser systems with arbitrary numbers of amplifier channels and optical delay lines.

3.
Phys Rev Lett ; 115(2): 023902, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207470

RESUMO

We combine high-finesse optical resonators and spatial-spectral interferometry to a highly phase-sensitive investigation technique for nonlinear light-matter interactions. We experimentally validate an ab initio model for the nonlinear response of a resonator housing a gas target, permitting the global optimization of intracavity conversion processes like high-order harmonic generation. We predict the feasibility of driving intracavity high-order harmonic generation far beyond intensity limitations observed in state-of-the-art systems by exploiting the intracavity nonlinearity to compress the pulses in time.

4.
Opt Lett ; 40(5): 843-6, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25723447

RESUMO

Thermal lensing poses a serious challenge for the power scaling of enhancement cavities, in particular when these contain transmissive elements. We demonstrate the compensation of the lensing induced by thermal deformations of the cavity mirrors with the thermal lensing in a thin Brewster plate. Using forced convection to fine-tune the lensing in the plate, we achieve average powers of up to 160 kW for 250-MHz-repetition-rate picosecond pulses with a power-independent mode size. Furthermore, we show that the susceptibility of the cavity mode size to thermal lensing allows highly sensitive absorption measurements.

5.
Opt Lett ; 39(9): 2595-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784054

RESUMO

We investigate power scaling of ultrashort-pulse enhancement cavities. We propose a model for the sensitivity of a cavity design to thermal deformations of the mirrors due to the high circulating powers. Using this model and optimized cavity mirrors, we demonstrate 400 kW of average power with 250 fs pulses and 670 kW with 10 ps pulses at a central wavelength of 1040 nm and a repetition rate of 250 MHz. These results represent an average power improvement of one order of magnitude compared to state-of-the-art systems with similar pulse durations and will thus benefit numerous applications such as the further scaling of tabletop sources of hard x rays (via Thomson scattering of relativistic electrons) and of soft x rays (via high harmonic generation).

6.
Phys Rev Lett ; 112(10): 103902, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679296

RESUMO

We theoretically and experimentally investigate high-harmonic generation in a 78-MHz enhancement cavity with a transverse mode having on-axis intensity maxima at the focus and minima at an opening in the following mirror. We find that the conversion efficiency is comparable to that achievable with a Gaussian mode, whereas the output coupling efficiency can be significantly improved over any other demonstrated technique. This approach offers additional power scaling advantages and additional degrees of freedom in shaping the harmonic emission, paving the way to high-power extreme-ultraviolet frequency combs and the generation of multi-MHz repetition-rate-isolated attosecond pulses.

7.
Opt Lett ; 34(24): 3788-90, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20016614

RESUMO

Using phase shaping, the impact of the Kerr effect in a fiber-based chirped-pulse amplification (CPA) system is experimentally controlled. The technique is based on an analytical model describing the spectral phase owing to self-phase modulation in CPA systems. The method relies neither on complex phase measurements nor on time-consuming optimization routines. Nearly transform-limited pulses with energies as high as 1 mJ are produced, and a B integral being as high as 8 rad is accumulated in the main amplifier. The value of the B integral is determined by the method itself.

8.
Opt Express ; 16(6): 3918-23, 2008 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-18542488

RESUMO

We report on an ytterbium-doped single-transverse-mode rod-type photonic crystal fiber that combines the advantages of low nonlinearity and intrinsic polarization stability. The mode-field-area of the fundamental mode is as large as 2300 microm(2). An output power of up to 163 W with a degree of polarization better than 85% has been extracted from a simple fiber laser setup without any additional polarizing element within the cavity than the fiber itself. The beam quality has been characterized by a M(2) value of 1.2. The single-polarization window ranges from 1030 to 1080 nm, hence possesses an excellent overlap with the gain profile of ytterbium-doped silica fibers. To the best of our knowledge this fiber design has the largest mode-field-diameter ever reported for polarizing or even polarization maintaining rare-earth-doped double-clad fibers.


Assuntos
Cristalização/métodos , Tecnologia de Fibra Óptica/instrumentação , Refratometria/instrumentação , Itérbio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Fótons
9.
Opt Lett ; 32(24): 3495-7, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18087520

RESUMO

We report on an ytterbium-doped fiber chirped-pulse amplification (CPA) system delivering millijoule level pulse energy at repetition rates above 100 kHz corresponding to an average power of more than 100 W. The compressed pulses are as short as 800 fs. As the main amplifier, an 80 microm core diameter short length photonic crystal fiber is employed, which allows the generation of pulse energies up to 1.45 mJ with a B-integral as low as 7 at a stretched pulse duration of 2 ns. A stretcher-compressor unit consisting of dielectric diffraction gratings is capable of handling the average power without beam and pulse quality distortions. To our knowledge, we present the highest pulse energy ever extracted from fiber based femtosecond laser systems, and a nearly 2 orders of magnitude higher repetition rate than in previously published millijoule-level fiber CPA systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA