Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(23): 14938-14953, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38726598

RESUMO

Porous silicon nanoneedles can interface with cells and tissues with minimal perturbation for high-throughput intracellular delivery and biosensing. Typically, nanoneedle devices are rigid, flat, and opaque, which limits their use for topical applications in the clinic. We have developed a robust, rapid, and precise substrate transfer approach to incorporate nanoneedles within diverse substrates of arbitrary composition, flexibility, curvature, transparency, and biodegradability. With this approach, we integrated nanoneedles on medically relevant elastomers, hydrogels, plastics, medical bandages, catheter tubes, and contact lenses. The integration retains the mechanical properties and transfection efficiency of the nanoneedles. Transparent devices enable the live monitoring of cell-nanoneedle interactions. Flexible devices interface with tissues for efficient, uniform, and sustained topical delivery of nucleic acids ex vivo and in vivo. The versatility of this approach highlights the opportunity to integrate nanoneedles within existing medical devices to develop advanced platforms for topical delivery and biosensing.


Assuntos
Ácidos Nucleicos , Silício , Silício/química , Porosidade , Animais , Ácidos Nucleicos/química , Humanos , Nanoestruturas/química , Nanotecnologia , Camundongos
2.
J Invest Dermatol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763174

RESUMO

Gene editing nucleases, base editors, and prime editors are potential locus-specific genetic treatment strategies for recessive dystrophic epidermolysis bullosa; however, many recessive dystrophic epidermolysis bullosa COL7A1 pathogenic nucleotide variations (PNVs) are unique, making the development of personalized editing reagents challenging. A total of 270 of the ∼320 COL7A1 epidermolysis bullosa PNVs reside in exons that can be skipped, and antisense oligonucleotides and gene editing nucleases have been used to create in-frame deletions. Antisense oligonucleotides are transient, and nucleases generate deleterious double-stranded DNA breaks and uncontrolled mixtures of allele products. We developed a twin prime editing strategy using the PEmax and recently evolved PE6 prime editors and dual prime editing guide RNAs flanking COL7A1 exon 5. Prime editing-mediated deletion of exon 5 with a homozygous premature stop codon was achieved in recessive dystrophic epidermolysis bullosa fibroblasts, keratinocytes, and induced pluripotent stem cells with minimal double-stranded DNA breaks, and collagen type VII protein was restored. Twin prime editing can replace the target exon with recombinase attachment sequences, and we exploited this to reinsert a normal copy of exon 5 using the Bxb1 recombinase. These findings demonstrate that twin prime editing can facilitate locus-specific, predictable, in-frame deletions and sequence replacement with few double-stranded DNA breaks as a strategy that may enable a single therapeutic agent to treat multiple recessive dystrophic epidermolysis bullosa patient cohorts.

3.
Blood ; 143(21): 2201-2216, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38447038

RESUMO

ABSTRACT: Fanconi anemia (FA) is an inherited DNA repair disorder characterized by bone marrow (BM) failure, developmental abnormalities, myelodysplasia, leukemia, and solid tumor predisposition. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a mainstay treatment, is limited by conditioning regimen-related toxicity and graft-versus-host disease (GVHD). Antibody-drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) can open marrow niches permitting donor stem cell alloengraftment. Here, we report that single dose anti-mouse CD45-targeted ADC (CD45-ADC) facilitated stable, multilineage chimerism in 3 distinct FA mouse models representing 90% of FA complementation groups. CD45-ADC profoundly depleted host stem cell enriched Lineage-Sca1+cKit+ cells within 48 hours. Fanca-/- recipients of minor-mismatched BM and single dose CD45-ADC had peripheral blood (PB) mean donor chimerism >90%; donor HSCs alloengraftment was verified in secondary recipients. In Fancc-/- and Fancg-/- recipients of fully allogeneic grafts, PB mean donor chimerism was 60% to 80% and 70% to 80%, respectively. The mean percent donor chimerism in BM and spleen mirrored PB results. CD45-ADC-conditioned mice did not have clinical toxicity. A transient <2.5-fold increase in hepatocellular enzymes and mild-to-moderate histopathological changes were seen. Under GVHD allo-HSCT conditions, wild-type and Fanca-/- recipients of CD45-ADC had markedly reduced GVHD lethality compared with lethal irradiation. Moreover, single dose anti-human CD45-ADC given to rhesus macaque nonhuman primates on days -6 or -10 was at least as myeloablative as lethal irradiation. These data suggest that CD45-ADC can potently promote donor alloengraftment and hematopoiesis without significant toxicity or severe GVHD, as seen with lethal irradiation, providing strong support for clinical trial considerations in highly vulnerable patients with FA.


Assuntos
Anemia de Fanconi , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Imunoconjugados , Antígenos Comuns de Leucócito , Animais , Anemia de Fanconi/terapia , Camundongos , Doença Enxerto-Hospedeiro/patologia , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Condicionamento Pré-Transplante/métodos , Transplante Homólogo , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA