Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 22(1): 192, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578240

RESUMO

BACKGROUND: In hepatocellular carcinoma (HCC), histone deacetylases (HDACs) are frequently overexpressed. This results in chromatin compaction and silencing of tumor-relevant genes and microRNAs. Modulation of microRNA expression is a potential treatment option for HCC. Therefore, we aimed to characterize the epigenetically regulated miR-129-5p regarding its functional effects and target genes to understand its relevance for HCC tumorigenesis. METHODS: Global miRNA expression of HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B) and normal liver cell lines (THLE-2, THLE-3) was analyzed after HDAC inhibition by miRNA sequencing. An in vivo xenograft mouse model and in vitro assays were used to investigate tumor-relevant functional effects following miR-129-5p transfection of HCC cells. To validate hepatoma-derived growth factor (HDGF) as a direct target gene of miR-129-5p, luciferase reporter assays were performed. Survival data and HDGF expression were analyzed in public HCC datasets. After siRNA-mediated knockdown of HDGF, its cancer-related functions were examined. RESULTS: HDAC inhibition induced the expression of miR-129-5p. Transfection of miR-129-5p increased the apoptosis of HCC cells, decreased proliferation, migration and ERK signaling in vitro and inhibited tumor growth in vivo. Direct binding of miR-129-5p to the 3'UTR of HDGF via a noncanonical binding site was validated by luciferase reporter assays. HDGF knockdown reduced cell viability and migration and increased apoptosis in Wnt-inactive HCC cells. These in vitro results were in line with the analysis of public HCC datasets showing that HDGF overexpression correlated with a worse survival prognosis, primarily in Wnt-inactive HCCs. CONCLUSIONS: This study provides detailed insights into the regulatory network of the tumor-suppressive, epigenetically regulated miR-129-5p in HCC. Our results reveal for the first time that the therapeutic application of mir-129-5p may have significant implications for the personalized treatment of patients with Wnt-inactive, advanced HCC by directly regulating HDGF. Therefore, miR-129-5p is a promising candidate for a microRNA replacement therapy to prevent HCC progression and tumor metastasis.

2.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563522

RESUMO

Chromosomal instability (CIN) can be a driver of tumorigenesis but is also a promising therapeutic target for cancer associated with poor prognosis such as triple negative breast cancer (TNBC). The treatment of TNBC cells with defects in DNA repair genes with poly(ADP-ribose) polymerase inhibitor (PARPi) massively increases CIN, resulting in apoptosis. Here, we identified a previously unknown role of microRNA-449a in CIN. The transfection of TNBC cell lines HCC38, HCC1937 and HCC1395 with microRNA-449a mimics led to induced apoptosis, reduced cell proliferation, and reduced expression of genes in homology directed repair (HDR) in microarray analyses. EME1 was identified as a new target gene by immunoprecipitation and luciferase assays. The reduced expression of EME1 led to an increased frequency of ultrafine bridges, 53BP1 foci, and micronuclei. The induced expression of microRNA-449a elevated CIN beyond tolerable levels and induced apoptosis in TNBC cell lines by two different mechanisms: (I) promoting chromatid mis-segregation by targeting endonuclease EME1 and (II) inhibiting HDR by downregulating key players of the HDR network such as E2F3, BIRC5, BRCA2 and RAD51. The ectopic expression of microRNA-449a enhanced the toxic effect of PARPi in cells with pathogenic germline BRCA1 variants. The newly identified role makes microRNA-449a an interesting therapeutic target for TNBC.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cromátides/metabolismo , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia
3.
J Cancer ; 13(1): 62-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976171

RESUMO

BACKGROUND: Patients with hepatocellular carcinoma (HCC) have very limited treatment options. For the last fourteen years, the multi-tyrosine kinase inhibitor sorafenib has been used as standard-of-care therapeutic agent in advanced HCC. Unfortunately, drug resistance develops in many cases. Therefore, we aimed to find a way to mitigate drug resistance and to improve the sorafenib efficacy in HCC cells. MicroRNAs play a significant role in targeting genes involved in tumor control suggesting microRNA/sorafenib combination therapy as a promising treatment option in advanced HCC. METHODS: MiR-449a-5p target genes were identified by Ago-RIP sequencing and validated by luciferase reporter assays and expression analyses. Target gene expression and survival data were analyzed in public HCC datasets. Tumor-relevant functional effects of miR-449a-5p and its target genes as well as their impact on the effects of sorafenib were analyzed using in vitro assays. An indirect transwell co-culture system was used to survey anti-angiogenic effects of miR-449a-5p. RESULTS: PEA15, PPP1CA and TUFT1 were identified as direct target genes of miR-449a-5p. Overexpression of these genes correlated with a poor outcome of HCC patients. Transfection with miR-449a-5p and repression of miR-449a-5p target genes inhibited cell proliferation and angiogenesis, induced apoptosis and reduced AKT and ERK signaling in HLE and Huh7 cells. Importantly, miR-449a-5p potentiated the efficacy of sorafenib in HCC cells via downregulation of PEA15, PPP1CA and TUFT1. CONCLUSIONS: This study provides detailed insights into the targetome and regulatory network of miR-449a-5p. Our results demonstrate for the first time that targeting PEA15, PPP1CA and TUFT1 via miR-449a overexpression could have significant implications in counteracting sorafenib resistance suggesting miR-449a-5p as a promising candidate for a microRNA/sorafenib combination therapy.

4.
Genes Chromosomes Cancer ; 60(11): 733-742, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34296808

RESUMO

Among the different breast cancer subtypes, triple-negative breast cancer (TNBC) is associated with a poor prognosis, low survival rates, and high expression of histone deacetylases. Treatment with histone deacetylase inhibitor trichostatin A (TSA) leads to an increased expression of potential tumor-suppressive miRNAs. Characterization of these miRNAs can help to find new molecular targets for treatment of TNBC. We identified differentially expressed miRNAs by microarray analyses after treatment with TSA in the TNBC cell lines HCC38, HCC1395, and HCC1935. The gene locus of hsa-miRNA-192-5p (miR-192) and hsa-miR-194-2 (miR-194-2) with its host gene, long noncoding RNA miR-194-2HG, has been linked to inhibition of migration in different tumor types. Therefore, we examined tumor-relevant functional effects using WST-1-based proliferation, capsase-3/7-based apoptosis, and trans-well migration assays after transfection with miRNA mimics or specific siRNAs. We demonstrated the tumor-suppressive capacity of miR-192 in TNBC cells, which was exerted through inhibition of proliferation, induction of apoptosis, and reduction of migration. Gene expression and bioinformatics analyses of TNBC cell lines transfected with miR-192 mimics, identified a number of genes involved in migration including the Rho GTPase Activating Protein ARHGAP19. Through RNA immunoprecipitation we demonstrated the direct binding of miR-192 and ARHGAP19. Downregulation of ARHGAP19 expression by either miR-192 or siRNA inhibited migration of TNBC cells significantly. Our findings demonstrate that overexpression of epigenetically deregulated miR-192 decreases proliferation, promotes apoptosis, and inhibits migration of TNBC cell lines.


Assuntos
Proteínas Ativadoras de GTPase/genética , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular , Movimento Celular , Regulação para Baixo , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
5.
Hepatol Int ; 14(3): 373-384, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31440992

RESUMO

BACKGROUND: Activation of Wnt/ß-catenin pathway is a frequent event in hepatocellular carcinoma and is associated with enhanced cell survival and proliferation. Therefore, targeting this signaling pathway is discussed as an attractive therapeutic approach for HCC treatment. BCL9 and BCL9L, two homologous coactivators of the ß-catenin transcription factor complex, have not yet been comprehensively characterized in HCC. We aimed to elucidate the roles of BCL9 and BCL9L, especially regarding Wnt/ß-catenin signaling and their prognostic value in HCC. METHODS: Expression of BCL9/BCL9L was determined in HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B, and Huh6) and normal liver cell lines (THLE-2 and THLE-3). To analyze proliferation and apoptosis, BCL9 and/or BCL9L were knocked down in Wnt-inactive HLE and Wnt-active HepG2 and Huh6 cells using siRNA. Subsequently, Wnt reporter assays were performed in HepG2 and Huh6 cells. BCL9 and BCL9L expression, clinicopathological and survival data of public HCC datasets were analyzed, taking the Wnt signaling status into account. RESULTS: Knockdown of BCL9L, but not of BCL9, reduced Wnt signaling activity. Knockdown of BCL9 and/or BCL9L reduced cell viability and increased apoptosis of Wnt-inactive HCC cells, but had no effect in Wnt-active cells. Expression of BCL9 and BCL9L was upregulated in human HCC and increased with progressing dedifferentiation. For BCL9L, higher expression was observed in tumors of larger size. Overexpression of BCL9 and BCL9L correlated with poor overall survival, especially in HCC without activated Wnt signaling. CONCLUSION: Oncogenic BCL9 proteins represent promising targets for cancer therapy and inhibiting them may be particularly beneficial in Wnt-inactive HCCs.


Assuntos
Carcinoma Hepatocelular , Proteínas de Ligação a DNA/genética , Neoplasias Hepáticas , Fatores de Transcrição/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias , Farmacogenética , Prognóstico , Análise de Sobrevida , Via de Sinalização Wnt
6.
Eur J Hum Genet ; 27(6): 879-887, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30723317

RESUMO

Wilson disease (WD) is an autosomal recessive disease of copper excess due to pathogenic variants in the ATP7B gene coding for a copper-transporting ATPase. We present a 5-year-old girl with the homozygous frame shift variant NM_000053.3: c.19_20del in exon 1 of ATP7B (consecutive exon numbering with c.1 as first nucleotide of exon 1), detected by whole-exome sequencing as a secondary finding. The variant leads to a premature termination codon in exon 2. The girl exhibited no WD symptoms and no abnormalities in liver biopsy. ATP7B liver mRNA expression was comparable to healthy controls suggesting that nonsense-mediated mRNA decay (NMD) could be bypassed by the mechanism of translation reinitiation. To verify this hypothesis, a CMV-driven ATP7B minigene (pcDNA3) was equipped with the authentic ATP7B 5' untranslated region  and a truncated intron 2. We introduced c.19_20del by site-directed mutagenesis and overexpressed the constructs in HEK293T cells. We analyzed ATP7B expression by qRT-PCR, northern and western blot, and examined protein function by copper export capacity assays. Northern blot, qRT-PCR, and western blot revealed that c.19_20del ATP7B mRNA and protein is expressed in size and amount comparable to wild-type. Copper export capacity was also comparable to wild-type. Our results indicate that c.19_20del in ATP7B is able to bypass NMD by translation reinitiation, demonstrating that the classification of truncating variants as pathogenic without additional investigations should be done carefully.


Assuntos
ATPases Transportadoras de Cobre , Cobre/metabolismo , Éxons , Mutação da Fase de Leitura , Degeneração Hepatolenticular , Homozigoto , Degradação do RNAm Mediada por Códon sem Sentido , Pré-Escolar , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Feminino , Células HEK293 , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Humanos , Transporte de Íons/genética
7.
J Hepatol ; 66(5): 1012-1021, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28088579

RESUMO

BACKGROUND & AIMS: Modulation of microRNA expression is a potential treatment for hepatocellular carcinoma (HCC). Therefore, the epigenetically regulated microRNA-449 family (miR-449a, miR-449b, miR-449c) was characterized with regards to its functional effects and target genes in HCC. METHODS: After transfection of miR-449a, miR-449b, and/or miR-449c, tumor-relevant functional effects were analyzed using in vitro assays and a xenograft mouse model. Binding specificities, target genes, and regulated pathways of each miRNA were identified by microarray analyses. Target genes were validated by luciferase reporter assays and expression analyses in vitro. Furthermore, target gene expression was analyzed in 61 primary human HCCs compared to normal liver tissue. RESULTS: Tumor suppressive effects, binding specificities, target genes, and regulated pathways of miR-449a and miR-449b differed from those of miR-449c. Transfection of miR-449a, miR-449b, and/or miR-449c inhibited cell proliferation and migration, induced apoptosis, and reduced tumor growth to different extents. Importantly, miR-449a, miR-449b, and, to a lesser degree, miR-449c directly targeted SOX4, which codes for a transcription factor involved in epithelial-mesenchymal transition and HCC metastasis, and thereby inhibited TGF-ß-mediated cell migration. CONCLUSIONS: This study provides detailed insights into the regulatory network of the epigenetically regulated miRNA-449 family and, for the first time, describes distinct tumor suppressive effects and target specificities of miR-449a, miR-449b, and miR-449c. Our results indicate that particularly miR-449a and miR-449b may be considered for miRNA replacement therapy to prevent HCC progression and metastasis. LAY SUMMARY: In this study, we demonstrated that the microRNA-449 family acts as a tumor suppressor in liver cancer by causing cell death and inhibiting cell migration. These effects are caused by downregulation of the oncogene SOX4, which is frequently overexpressed in liver cancer. We conclude that the microRNA-449 family may be a target for liver cancer therapy.


Assuntos
Carcinoma Hepatocelular/patologia , Movimento Celular , Genes Supressores de Tumor/fisiologia , Neoplasias Hepáticas/patologia , MicroRNAs/fisiologia , Fatores de Transcrição SOXC/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Acetilação , Animais , Carcinoma Hepatocelular/terapia , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/terapia , Camundongos , Fator de Crescimento Transformador beta/fisiologia
8.
Gastroenterology ; 143(3): 811-820.e15, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22641068

RESUMO

BACKGROUND & AIMS: Histone deacetylation regulates chromatin remodeling and transcriptional down-regulation of specific genomic regions; it is altered in many types of cancer cells. We searched for microRNAs (miRs) that are affected by histone deacetylation and investigated the effects in hepatocellular carcinoma (HCC) cells. METHODS: HCC cell lines (HepG2, HLE, HLF, and Huh7) and immortalized liver cell lines (THLE-2 and THLE-3) were incubated with the histone deacetylase inhibitor trichostatin A. Differentially expressed messenger RNAs (mRNAs) and miRs were identified by expression profiling. Small interfering RNAs were used to reduce levels of histone deacetylases (HDAC)1-3, and HCC cell lines were transfected with miR-449. We evaluated growth of xenograft tumors from modified cells in nude mice. Cells were analyzed by immunoblot and luciferase reporter assays. We analyzed HCC samples from 23 patients. RESULTS: HDAC1-3 were up-regulated in HCC samples from patients. In cell lines, inhibition of HDAC significantly increased levels of hsa-miR-449a. c-MET mRNA, which encodes the receptor tyrosine kinase for hepatocyte growth factor, is a target of miR-449. Incubation of HCC cells with trichostatin A or transfection with miR-449 reduced expression of c-MET and phosphorylation of extracellular signal-regulated kinases 1 and 2 (downstream effectors of c-MET), increased apoptosis, and reduced proliferation. Huh-7 cells transfected with miR-449 formed tumors more slowly in mice than cells expressing control miRs. HCC samples from patients had lower levels of miR-449 and higher levels of c-MET than human reference. CONCLUSIONS: In HCC cells, up-regulation of HDAC1-3 reduces expression of miR-449. miR-449 binds c-MET mRNA to reduce its levels, promoting apoptosis and reducing proliferation of liver cells. Expression of miR-449 slows growth of HCC xenograft tumors in mice; this miR might function as a tumor suppressor.


Assuntos
Carcinoma Hepatocelular/enzimologia , Fator de Crescimento de Hepatócito/metabolismo , Histona Desacetilases/metabolismo , Neoplasias Hepáticas/enzimologia , MicroRNAs/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Apoptose , Sítios de Ligação , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Células HEK293 , Células Hep G2 , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...