Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 36(12): 3481-94, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27013677

RESUMO

The neurobiological processes underpinning the natural forgetting of long-term memories are poorly understood. Based on the critical role of GluA2-containing AMPA receptors (GluA2/AMPARs) in long-term memory persistence, we tested in rats whether their synaptic removal underpins time-dependent memory loss. We found that blocking GluA2/AMPAR removal with the interference peptides GluA23Y or G2CT in the dorsal hippocampus during a memory retention interval prevented the normal forgetting of established, long-term object location memories, but did not affect their acquisition. The same intervention also preserved associative memories of food-reward conditioned place preference that would otherwise be lost over time. We then explored whether this forgetting process could play a part in behavioral phenomena involving time-dependent memory change. We found that infusing GluA23Y into the dorsal hippocampus during a 2 week retention interval blocked generalization of contextual fear expression, whereas infusing it into the infralimbic cortex after extinction of auditory fear prevented spontaneous recovery of the conditioned response. Exploring possible physiological mechanisms that could be involved in this form of memory decay, we found that bath application of GluA23Y prevented depotentiation, but not induction of long-term potentiation, in a hippocampal slice preparation. Together, these findings suggest that a decay-like forgetting process that involves the synaptic removal of GluA2/AMPARs erases consolidated long-term memories in the hippocampus and other brain structures over time. This well regulated forgetting process may critically contribute to establishing adaptive behavior, whereas its dysregulation could promote the decline of memory and cognition in neuropathological disorders. SIGNIFICANCE STATEMENT: The neurobiological mechanisms involved in the natural forgetting of long-term memory and its possible functions are not fully understood. Based on our previous work describing the role of GluA2-containing AMPA receptors in memory maintenance, here, we tested their role in forgetting of long-term memory. We found that blocking their synaptic removal after long-term memory formation extended the natural lifetime of several forms of memory. In the hippocampus, it preserved spatial memories and inhibited contextual fear generalization; in the infralimbic cortex, it blocked the spontaneous recovery of extinguished fear. These findings suggest that a constitutive decay-like forgetting process erases long-term memories over time, which, depending on the memory removed, may critically contribute to developing adaptive behavioral responses.


Assuntos
Memória de Longo Prazo/fisiologia , Rememoração Mental/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Recompensa , Sinapses/fisiologia , Animais , Masculino , Ratos , Ratos Long-Evans , Comportamento Estereotipado/fisiologia
2.
Neuropsychopharmacology ; 40(2): 480-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25091528

RESUMO

After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.


Assuntos
Medo/fisiologia , Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Giro do Cíngulo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Muscimol/farmacologia , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/metabolismo , Fatores de Tempo
3.
Learn Mem ; 19(10): 449-52, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22984282

RESUMO

It has been suggested that memories become more stable and less susceptible to the disruption of reconsolidation over weeks after learning. Here, we test this by targeting the anterior cingulate cortex (ACC) and test its involvement in the formation, consolidation, and reconsolidation of recent and remote contextual fear memory. We found that inhibiting NMDAR-NR2B activity disrupts memory formation, and that infusion of the protein-synthesis inhibitor anisomycin impairs memory consolidation and reconsolidation of recent and remote memory. Our findings demonstrate for the first time that the ACC plays an important role in reconsolidation of contextual fear memory at recent and remote time points.


Assuntos
Condicionamento Clássico/fisiologia , Medo , Giro do Cíngulo/fisiologia , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Estimulação Acústica/efeitos adversos , Análise de Variância , Animais , Anisomicina/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Giro do Cíngulo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Fenóis/farmacologia , Piperidinas/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...