Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6476, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838741

RESUMO

Global warming and associated changes in atmospheric circulation patterns are expected to alter the hydrological cycle, including the intensity and position of moisture sources. This study presents predicted changes for the middle and end of the 21st century under the SSP5-8.5 scenario for two important extratropical moisture sources: the North Atlantic Ocean (NATL) and Mediterranean Sea (MED). Changes over the Iberian Peninsula-considered as a strategic moisture sink for its location-are also studied in detail. By the end of the century, moisture from the NATL will increase precipitation over eastern North America in winter and autumn and on the British Isles in winter. Moisture from the MED will increase precipitation over the southern and western portions of the Mediterranean continental area. Precipitation associated with the MED moisture source will decrease mainly over eastern Europe, while that associated with the NATL will decrease over western Europe and Africa. Precipitation recycling on the Iberian Peninsula will increase in all seasons except summer for mid-century. Climate change, as simulated by CESM2 thus modifies atmospheric moisture transport, affecting regional hydrological cycles.

2.
Nat Commun ; 11(1): 5082, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033244

RESUMO

One of the most robust signals of climate change is the relentless rise in global mean surface temperature, which is linked closely with the water-holding capacity of the atmosphere. A more humid atmosphere will lead to enhanced moisture transport due to, among other factors, an intensification of atmospheric rivers (ARs) activity, which are an important mechanism of moisture advection from subtropical to extra-tropical regions. Here we show an enhanced evapotranspiration rates in association with landfalling atmospheric river events. These anomalous moisture uptake (AMU) locations are identified on a global scale. The interannual variability of AMU displays a significant increase over the period 1980-2017, close to the Clausius-Clapeyron (CC) scaling, at 7 % per degree of surface temperature rise. These findings are consistent with an intensification of AR predicted by future projections. Our results also reveal generalized significant increases in AMU at the regional scale and an asymmetric supply of oceanic moisture, in which the maximum values are located over the region known as the Western Hemisphere Warm Pool (WHWP) centred on the Gulf of Mexico and the Caribbean Sea.

3.
Ann N Y Acad Sci ; 1472(1): 104-122, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441831

RESUMO

Continued deforestation in the Amazon forest can alter the subsurface/surface and atmospheric branches of the hydrologic cycle. The sign and magnitude of these changes depend on the complex interactions between the water, energy, and momentum budgets. To understand these changes, we use the weather research and forecasting (WRF) model with improved representation of groundwater dynamics and the added feature of Amazonian moisture tracers. The control simulation uses moderate resolution imaging spectroradiometer (MODIS) based observations of land use, and the deforestation simulations use a "business-as-usual" scenario projected for 2040-2050. Our results show that deforestation leads to changes that are seasonally very different. During the dry season, deforestation results in increased albedo and less available net radiation. This change, together with reduced leaf area, results in decreased evapotranspiration (ET), less atmospheric moisture of Amazonian origin, and an increase in temperature. However, we find no changes in precipitation over the basin. Conversely, during the wet season, surface winds increase significantly due to decreased surface roughness. Vapor transport increases throughout the deforested region and leads to an increase in easterly moisture export, and significant decrease in precipitation within the deforested regions of Eastern Amazon. Contrary to expectations, the moisture tracers in WRF show no evidence that precipitation decreases are due to recycling or changes in stability.


Assuntos
Mudança Climática , Clima , Conservação dos Recursos Naturais , Chuva , Floresta Úmida , Modelos Teóricos
4.
Chaos ; 25(6): 063105, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26117099

RESUMO

We show that filamentous Atmospheric Rivers (ARs) over the Northern Atlantic Ocean are closely linked to attracting Lagrangian Coherent Structures (LCSs) in the large scale wind field. The detected LCSs represent lines of attraction in the evolving flow with a significant impact on all passive tracers. Using Finite-Time Lyapunov Exponents, we extract LCSs from a two-dimensional flow derived from water vapor flux of atmospheric reanalysis data and compare them to the three-dimensional LCS obtained from the wind flow. We correlate the typical filamentous water vapor patterns of ARs with LCSs and find that LCSs bound the filaments on the back side. Passive advective transport of water vapor in the AR from tropical latitudes is potentially possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...