Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Radiol ; 49(7): 445-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24598441

RESUMO

OBJECTIVES: Dynamic contrast-enhanced (DCE) micro-computed tomography (micro-CT) has emerged as a valuable imaging tool to noninvasively obtain quantitative physiological biomarkers of drug effect in preclinical studies of antiangiogenic compounds. In this study, we explored the ability of DCE micro-CT to assess the antiangiogenic treatment response in breast cancer xenografts and correlated the results to the structural vessel response obtained from 3-dimensional (3D) fluorescence ultramicroscopy (UM). MATERIAL AND METHODS: Two groups of tumor-bearing mice (KPL-4) underwent DCE micro-CT imaging using a fast preclinical dual-source micro-CT system (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany). Mice were treated with either a monoclonal antibody against the vascular endothelial growth factor or an unspecific control antibody. Changes in vascular physiology were assessed measuring the mean value of the relative blood volume (rBV) and the permeability-surface area product (PS) in different tumor regions of interest (tumor center, tumor periphery, and total tumor tissue). Parametric maps of rBV were calculated of the tumor volume to assess the intratumoral vascular heterogeneity. Isotropic 3D UM vessel scans were performed from excised tumor tissue, and automated 3D segmentation algorithms were used to determine the microvessel density (MVD), relative vessel volume, and vessel diameters. In addition, the accumulation of coinjected fluorescence-labeled trastuzumab was quantified in the UM tissue scans to obtain an indirect measure of vessel permeability. Results of the DCE micro-CT were compared with corresponding results obtained by ex vivo UM. For validation, DCE micro-CT and UM parameters were compared with conventional histology and tumor volume. RESULTS: Examination of the parametric rBV maps revealed significantly different patterns of intratumoral blood supply between treated and control tumors. Whereas control tumors showed a characteristic vascular rim pattern with considerably elevated rBV values in the tumor periphery, treated tumors showed a widely homogeneous blood supply. Compared with UM, the physiological rBV maps showed excellent agreement with the spatial morphology of the intratumoral vascular architecture. Regional assessment of mean physiological values exhibited a significant decrease in rBV (P < 0.01) and PS (P < 0.05) in the tumor periphery after anti-vascular endothelial growth factor treatment. Structural validation with UM showed a significant reduction in reduction of relative vessel volume (rVV) (P < 0.01) and MVD (P < 0.01) in the corresponding tumor region. The reduction in rBV correlated well with the rVV (R = 0.73 for single values and R = 0.95 for mean values). Spatial maps of antibody penetration showed a significantly reduced antibody accumulation (P < 0.01) in the tumor tissue after treatment and agreed well with the physiological change of PS. Examination of vessel diameters revealed a size-dependent antiangiogenic treatment effect, which showed a significant reduction in MVD (P < 0.001) for vessels with diameters smaller than 25 µm. No treatment effect was observed by tumor volume. CONCLUSIONS: Noninvasive DCE micro-CT provides valuable physiological information of antiangiogenic drug effect in the intact animal and correlates with ex vivo structural analysis of 3D UM. The combined use of DCE micro-CT with UM constitutes a complementary imaging toolset that can help to enhance our understanding of antiangiogenic drug mechanisms of action in preclinical drug research.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Tomografia Computadorizada por Raios X/métodos , Inibidores da Angiogênese/uso terapêutico , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Meios de Contraste , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto , Trastuzumab , Resultado do Tratamento
2.
Med Phys ; 39(6): 3229-39, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755706

RESUMO

PURPOSE: To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. METHODS: Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. RESULTS: The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of tube voltage. For 50 mm, voltages larger than 50 kV were preferred. For all three phantom sizes stronger filtration led to notable dose reduction for soft tissue imaging. Validation measurements were found to match simulations well, with deviations being less than 10%. Mouse measurements confirmed simulation results. CONCLUSIONS: Optimal photon energies and tube settings strongly depend on both phantom size and imaging task at hand. For in vivo CE imaging and density differences, strong filtration and voltages of 50-65 kV showed good overall results. For soft tissue imaging of animals the size of a rat or larger, voltages higher than 65 kV allow to greatly reduce scan times while maintaining dose efficiency. For imaging of bone structures, usage of only minimum filtration and low tube voltages of 40 kV and below allow exploiting the high contrast of bone at very low energies. Therefore, a combination of two filtrations could prove beneficial for micro-CT: a soft filtration allowing for bone imaging at low voltages, and a variable stronger filtration (e.g., 0.2 mm Cu) for soft tissue and contrast-enhanced imaging.


Assuntos
Microtomografia por Raio-X/métodos , Animais , Cor , Processamento de Imagem Assistida por Computador , Camundongos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Doses de Radiação , Análise Espectral
3.
Invest Radiol ; 47(8): 462-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22717880

RESUMO

OBJECTIVES: Dynamic contrast-enhanced imaging allows assessing functional information in addition to morphology using various modalities. Several applications have been established in clinical practice; however, there is no standard with respect to injection protocols or postprocessing algorithms. The purpose of this study was to develop a phantom for generating reproducible contrast-enhancement curves and providing a standard for comparison of different protocols and modalities in dynamic imaging. MATERIALS AND METHODS: Our experimental setup consists of a peristaltic pump to generate a water flow through the phantom and a contrast injection pump. The phantom holds a sequence of layers allowing for assessment of perfusion, signal-to-noise ratio, and spatiotemporal resolution; the latter is the spatial resolution of structures with temporally changing contrast. Reproducibility was evaluated by the functional parameters time to peak, mean transit time, and peak enhancement by 24 scans over 4 weeks on a clinical computed tomography scanner. In addition, the area under the curve was evaluated for different injection durations at constant injection volume. Spatiotemporal resolution was assessed by spatial profiles on perfused bore patterns and compared for standard reconstructions, smooth reconstructions, and highly constrained backprojection for local reconstruction (HYPR LR). RESULTS: The phantom showed good reproducibility in repeated measurements, with maximal deviations of 4% for time to peak, 9% for mean transit time, and 8% for peak enhancement. Area under the curve was constant within 3.5% for different injection protocols. For the static case, HYPR LR maintained spatial resolution. For dynamic objects, however, HYPR LR reduced spatial resolution dependent on temporal dynamics by up to 19% for highest dynamics, which was still superior to smooth reconstructions (27%). CONCLUSIONS: The proposed phantom showed good reproducibility and therefore allows for comparing injection protocols or modalities in dynamic imaging. Assessment of spatiotemporal resolution under measurement conditions provides means for assessing postprocessing methods and reconstruction techniques in dynamic imaging.


Assuntos
Meios de Contraste , Bombas de Infusão , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Polimetil Metacrilato , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Fatores de Tempo
4.
Med Phys ; 39(4): 2249-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22482646

RESUMO

PURPOSE: Modern computed tomography (CT) systems are supporting increasingly fast rotation speeds, which are a prerequisite for fast dynamic acquisition, e.g. in perfusion imaging, and for new modalities such as dedicated breast CT, where breathhold scanning is indicated. However, not all detector technologies are supporting the high frame rates that are necessary to retain high resolution for objects far away from the isocenter. Even on systems that would support a sufficiently high frame rate, the necessary bandwidth of the data transfer from the rotating gantry stills remains challenging. The authors evaluated a pixel shifting technique termed time-delayed summation (TDS) as a method of increasing resolution on fast rotating CT systems without the need to increase the frame rate. METHODS: In TDS mode, detector pixel values are shifted along rows during image acquisition to compensate for detector motion. In order to fully exploit TDS, focal spot position control (FSC) was used in combination with TDS. FSC applies a counter movement to the x-ray focal spot during image acquisition such that it is kept fixed in space. As a proof of concept, measurements were performed on a prototype photon counting detector capable of TDS. The detector was mounted on a movable table and a gold wire phantom was imaged with different TDS settings and detector velocities. Additionally, simulations of a broad range of TDS and FSC settings on two different modalities, a clinical CT scanner and a breast CT scanner, and two different detector geometries, flat and cylindrical, were performed to assess the gain in resolution and contrast in cylindrical water phantoms containing a small wire at distances from the phantom center varied from 5% to 90% of the phantom radius. As figures of merit, the modulation transfer function (MTF) at 10% and the maximum contrast were used and compared against the respective values when using step-and-shoot acquisition, which means stopping the rotation when a projection image is acquired. RESULTS: Measurements showed that detector movement and the resulting blurring of the wire projections were compensated to the expected degree when using the appropriate number of TDS shifts per frame (TDS factor). Using simulations it was found that when using the optimal TDS factor, over 90% of the resolution achieved in step-and-shot mode was reached for all investigated wire positions. TDS showed better performance on a cylindrical detector that on the same system with a flat detector. TDS factors that were deviating from the optimum by more than 1 shift led to a performance below that of standard continuous acquisition. CONCLUSIONS: The findings of this study encourage the combined usage of TDS and FSC in systems that require fast rotation. The integration of TDS in state-of-the-art x-ray detectors is feasible.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Rotação , Sensibilidade e Especificidade , Fatores de Tempo , Tomografia Computadorizada por Raios X/instrumentação
5.
Phys Med Biol ; 57(10): N173-82, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22517124

RESUMO

One of the biggest challenges in dynamic contrast-enhanced CT is the optimal synchronization of scan start and duration with contrast medium administration in order to optimize image contrast and to reduce the amount of contrast medium. We present a new optically based approach, which was developed to investigate and optimize bolus timing and shape. The time-concentration curve of an intravenously injected test bolus of a dye is measured in peripheral vessels with an optical sensor prior to the diagnostic CT scan. The curves can be used to assess bolus shapes as a function of injection protocols and to determine contrast medium arrival times. Preliminary results for phantom and animal experiments showed the expected linear behavior between dye concentration and absorption. The kinetics of the dye was compared to iodinated contrast medium and was found to be in good agreement. The contrast enhancement curves were reliably detected in three mice with individual bolus shapes and delay times of 2.1, 3.5 and 6.1 s, respectively. The optical sensor appears to be a promising approach to optimize injection protocols and contrast enhancement timing and is applicable to all modalities without implying any additional radiation dose. Clinical tests are still necessary.


Assuntos
Meios de Contraste , Fenômenos Ópticos , Tomografia Computadorizada por Raios X/métodos , Animais , Feminino , Humanos , Camundongos , Imagens de Fantasmas , Fatores de Tempo , Tomografia Computadorizada por Raios X/instrumentação
6.
Med Phys ; 39(2): 658-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22320775

RESUMO

PURPOSE: At present, no established methods exist for dosimetry in micro computed tomography (micro-CT). The purpose of this study was therefore to investigate practical concepts for both dosimetric scanner quality assurance and tissue dose assessment for micro-CT. METHODS: The computed tomography dose index (CTDI) was adapted to micro-CT and measurements of the CTDI both free in air and in the center of cylindrical polymethyl methacrylate (PMMA) phantoms of 20 and 32 mm diameter were performed in a 6 month interval with a 100 mm pencil ionization chamber calibrated for low tube voltages. For tissue dose assessment, z-profile measurements using thermoluminescence dosimeters (TLDs) were performed and both profile and CTDI measurements were compared to Monte Carlo (MC) dose calculations to validate an existing MC tool for use in micro-CT. The consistency of MC calculations and TLD measurements was further investigated in two mice cadavers. RESULTS: CTDI was found to be a reproducible quantity for constancy tests on the micro-CT system under study, showing a linear dependence on tube voltage and being by definition proportional to mAs setting and z-collimation. The CTDI measured free in air showed larger systematic deviations after the 6 month interval compared to the CTDI measured in PMMA phantoms. MC calculations were found to match CTDI measurements within 3% when using x-ray spectra measured at our micro-CT installation and better than 10% when using x-ray spectra calculated from semi-empirical models. Visual inspection revealed good agreement for all z-profiles. The consistency of MC calculations and TLD measurements in mice was found to be better than 10% with a mean deviation of 4.5%. CONCLUSIONS: Our results show the CTDI implemented for micro-CT to be a promising candidate for dosimetric quality assurance measurements as it linearly reflects changes in tube voltage, mAs setting, and collimation used during the scan, encouraging further studies on a variety of systems. For tissue dose assessment, MC calculations offer an accurate and fast alternative to TLD measurements allowing for dose calculations specific to any geometry and scan protocol.


Assuntos
Modelos Biológicos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Doses de Radiação , Radiometria/métodos , Radiometria/normas , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas , Animais , Simulação por Computador , Alemanha , Camundongos , Garantia da Qualidade dos Cuidados de Saúde/normas
7.
Eur Radiol ; 22(4): 900-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22071777

RESUMO

OBJECTIVE: To evaluate the potential of in vivo dynamic contrast-enhanced micro-computed tomography (DCE micro-CT) for the assessment of antiangiogenic drug therapy response of mice with mammary carcinoma. METHODS: 20 female mice with implanted MCF7 tumours were split into control group and therapy group treated with a known effective antiangiogenic drug. All mice underwent DCE micro-CT for the 3D analysis of functional parameters (relative blood volume [rBV], vascular permeability [K], area under the time-enhancement curve [AUC]) and morphology. All parameters were determined for total, peripheral and central tumour volumes of interest (VOIs). Immunohistochemistry was performed to characterise tumour vascularisation. 3D dose distributions were determined. RESULTS: The mean AUCs were significantly lower in therapy with P values of 0.012, 0.007 and 0.023 for total, peripheral and central tumour VOIs. K and rBV showed significant differences for the peripheral (P(per)(K) = 0.032, P(per) (rBV) = 0.029), but not for the total and central tumour VOIs (P(total)(K) = 0.108, P(central)(K) = 0.246, P(total) (rBV) = 0.093, P(central) (rBV) = 0.136). Mean tumour volume was significantly smaller in therapy (P (in vivo) = 0.001, P (ex vivo) = 0.005). Histology revealed greater vascularisation in the controls and central tumour necrosis. Doses ranged from 150 to 300 mGy. CONCLUSIONS: This study indicates the great potential of DCE micro-CT for early in vivo assessment of antiangiogenic drug therapy response. KEY POINTS: Dynamic contrast enhanced micro-CT (computed tomography) is a new experimental laboratory technique. DCE micro-CT allows early in vivo assessment of antiangiogenic drug therapy response. Pharmaceutical drugs can be tested before translation to clinical practice. Both morphological and functional parameters can be obtained using DCE micro-CT. Antiangiogenic effects can be visualised with DCE micro-CT.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Imageamento Tridimensional/veterinária , Iohexol/análogos & derivados , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Sirolimo/análogos & derivados , Tomografia Computadorizada por Raios X/veterinária , Animais , Linhagem Celular Tumoral , Meios de Contraste , Everolimo , Feminino , Camundongos , Camundongos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sirolimo/administração & dosagem , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
8.
Med Phys ; 38(12): 6469-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22149830

RESUMO

PURPOSE: Currently, only iodine- and barium-based contrast media (CM) are used in clinical contrast-enhanced computed tomography (CE-CT). High-Z metals would produce a higher contrast at equal mass density for the x-ray spectra used in clinical CT. Using such materials might allow for significant dose reductions in CE-CT. The purpose of this study was to quantify the potential for dose reduction when using CM based on heavy metals. METHODS: The contrast-to-noise ratio weighted by dose (CNRD) was determined as a function of scan protocol by means of measurements and simulations on a clinical CT scanner. For simulations, water cylinders with diameters 160, 320, 480, and 640 mm were used to cover a broad range of patient sizes. Measurements were conducted with 160 and 320 mm water-equivalent plastic cylinders. A central bore of 13 mm diameter was present in all phantoms. The tube voltage was varied from 80 to 140 kV for measurements and from 60 to 180 kV for simulations. Additional tin filtration of thicknesses 0.4, 0.8, and 1.2 mm was applied in the simulation to evaluate a range of spectral hardness. The bore was filled with a mixture of water and 10 mg/ml of pure iodine, holmium, gadolinium, ytterbium, osmium, tungsten, gold, and bismuth for the simulations and with aqueous solutions of ytterbium, tungsten, gold, and bismuth salts as well as Iopromid containing 10 mg/ml of the pure materials for the measurements. CNRDs were compared to iodine at phantom size-dependent reference voltages for all high-Z materials and the resulting dose reduction was calculated for equal contrast-to-noise ratio. RESULTS: Dose reduction potentials strongly depended on phantom size, spectral hardness, and tube voltage. Depending on the added filtration, a dose reduction of 19%-60% could be reached at 80 kV with gadolinium for the 160 mm phantom, 52%-69% at 100 kV with holmium for the 320 mm phantom, 62%-78% with 120 kV for hafnium and the 480 mm phantom and 74%-86% with 140 kV for gold and the 640 mm phantom. While gadolinium might be considered at 160 mm diameter, hafnium showed the best overall performance for phantom sizes of 320 mm and above. The measurements conducted on the clinical CT scanner showed very good agreement with simulations with deviations in the order of 5 to 10%. CONCLUSIONS: The results of this study encourage the development and use of CM based on high-Z materials, especially for adipose patients, where high tube voltages are necessary to reach sufficiently short scan times. Hafnium proved to be the best compromise for average-size and for adipose patients. Even higher-Z materials such as gold and bismuth showed a good overall performance in conjunction with high tube voltage, large patients or strong added filtration and may be recommended for scans under these conditions.


Assuntos
Aumento da Imagem/métodos , Metais , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste/química , Estudos de Viabilidade , Metais/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Z Med Phys ; 20(4): 277-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20889320

RESUMO

This paper describes a general theoretical model for computing a broad beam excitation light transport in a 3D diffusion medium. The model is based on the diffusion approximation of the radiative transport equation. An analytical approach for the light propagation is presented by deriving a corresponding Green's function. A finite cylindrical domain with a rectangular cross section was considered as a 3D homogeneous phantom model. The results of the model are compared with corresponding experimental data. The measurements are done on solid and liquid phantoms replicating tissue-like optical properties.


Assuntos
Tomografia Óptica/métodos , Simulação por Computador , Lasers , Luz , Modelos Teóricos , Nefelometria e Turbidimetria , Imagens de Fantasmas , Espalhamento de Radiação
10.
Ann Biomed Eng ; 38(7): 2464-72, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20204700

RESUMO

Registration of bone structures is a common problem in medical research as well as in clinical applications. Intrasubject rigid 3D monomodality registration of segmented bone structures of CT images and multimodality registration of muMR and segmented muCT bone images were performed with the multiresolution intensity-based technique implemented in ITK. The registration results for binary volumes of interest (VOI) masks and for segmented gray value VOIs were compared. To determine the registration quality, in the monomodality case the sum of squared difference, the sum of absolute differences, and the normalized symmetric difference of binary masks and in the multimodality case Mattes mutual information were applied. The use of binary VOI masks was significantly superior to the use of gray value VOIs.


Assuntos
Diagnóstico por Imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade
11.
Phys Med Biol ; 55(5): 1429-39, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20150681

RESUMO

In this study we compared two approaches that have recently been used to minimize precision errors in 3D quantitative computed tomography (QCT) images of the hip and the spine in order to optimize the detection of longitudinal changes in bone mineral density (BMD). In 30 subjects we obtained baseline and 1 year follow-up 3D CT scans of the proximal femur and the spine. QCT analysis was applied to a variety of volumes of interest (VOIs) automatically positioned relative to anatomic coordinate systems (ACS). In the first approach (A1) baseline and follow-up scans were analyzed independently. In the second approach (A2) a 3D versor-based rigid intensity registration method was applied to match baseline and follow-up images, and the baseline ACS was mapped on the follow-up image using the registration transformation. Afterwards, the analysis VOIs were again independently calculated for baseline and follow-up images. There were no significant differences of percent BMD changes between baseline and follow-up images between A1 and A2 for any of the VOIs investigated. With advanced image processing methods a time-consuming 3D registration between baseline and follow-up images before the analysis does not improve analysis precision compared to the use of anatomical coordinate systems.


Assuntos
Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Densidade Óssea , Feminino , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Humanos , Padrões de Referência , Reprodutibilidade dos Testes , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiologia , Tomografia Computadorizada por Raios X/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...